Warum hat jede Integralfunktion mindestens eine Nullstelle?

(1 BE)

Lösung zu Teilaufgabe 4a

Nullstelle einer Integralfunktion

Nullstelle einer Integralfunktion

Jede Integralfunktion \(\displaystyle I_{a} \colon x \mapsto \int_{a}^{x} f(t)\, dt\) besitzt an der unteren Integrationsgrenze \(x = a\) eine Nullstelle.

\[I_{a}(a) = \int_{a}^{a} f(t) \, dt = F(a) - F(a) = 0\]

\(F\) ist eine Stammfunktion von \(f\).

Jede Integralfunktion hat eine Nullstelle an der unteren Intergrationsgrenze.

Berechnung / Eigenschaften bestimmter Integrale

Berechnung bestimmter Integrale

\[\int_{a}^{b} f(x)\,dx = [F(x)]_{a}^{b} = F(b) - F(a)\]

Dabei ist \(F\) eine beliebige Stammfunktion zu \(f\).

(vgl. Merkhilfe)

Eigenschaften des bestimmten Integrals - Integrationsregeln

Identische Integrationsgrenzen:

\[\int_{a}^{a} f(x)\,dx = 0\]

Faktorregel:

\(\displaystyle \int_{a}^{b} c \cdot f(x)\,dx = c \cdot \int_{a}^{b} f(x)\,dx\) mit \(c \in \mathbb R\)

Summenregel:

\[\int_{a}^{b} \left[f(x) \pm g(x) \right] dx = \int_{a}^{b}f(x)\,dx \pm \int_{a}^{b}g(x)\,dx\]

Vertauschungsregel:

\[\int_{a}^{b}f(x)\,dx = -\int_{b}^{a}f(x)\,dx\]

Zerlegung in Teilintervalle:

\(\displaystyle \int_{a}^{b}f(x)\,dx = \int_{a}^{c}f(x)\,dx + \int_{c}^{b}f(x)\,dx\) mit \(a \leq c \leq b\)

\[\begin{align*} I(x) = \int_a^x f(t)\,dt \quad \Longrightarrow \quad I(a) &= \int_a^a f(t)\,dt \\[0.8em] &= [F(t)]_a^a \\[0.8em] &= F(a) - F(a) \\[0.8em] &= 0 \end{align*}\]