Teilaufgabe 3b

Ermitteln Sie das Symmetrieverhalten des Graphen von \(f\) und geben Sie den Grenzwert von \(f\) für \(x \to +\infty\) an.

(3 BE)

Lösung zu Teilaufgabe 3b

 

Symmetrieverhalten von \(G_f\)

 

\[f(x) = \frac{\sin x}{x^2}\]

\[f(-x) = \frac{\sin(-x)}{(-x)^2} = \frac{-\sin x}{x^2} = -f(x)\]

 

\(\Longrightarrow \quad\) Der Graph von \(f\) ist punktsymmetrisch zum Ursprung.

 

Grenzwert von \(f\) für \(x \to +\infty\)

 

\[f(x) = \frac{\sin x}{x^2}\]

 

\[\lim \limits_{x \, \to \, +\infty} f(x) = \lim \limits_{x \, \to \, +\infty} \bigg ( \frac{\overbrace{\enspace \sin x \enspace}^{[-1;1]}}{\underbrace{\enspace x^2 \enspace}_{\to \; +\infty}} \bigg ) = 0\]

Weitere Lösungen dieser Aufgabengruppe: « Teilaufgabe 3a Teilaufgabe 3c »