Teilaufgabe b

Weisen Sie nach, dass der Koordinatenursprung \(O\) mit den Punkten \(A\), \(B\) und \(C\) ein Rechteck \(OABC\) festlegt. Bestätigen Sie, dass dieses Rechteck den Flächeninhalt 6000 besitzt, und zeichnen Sie es in ein Koordinatensystem (vgl. Abbildung) ein.
Abbildung Teilaufgabe b: Koordinatensystem, Lage der Koordinatenachsen

(6 BE)

Lösung zu Teilaufgabe b

 

Nachweis, dass das Viereck \(OABC\) ein Rechteck ist

 

Der Koordinatenursprung \(O\) legt mit den Punkten \(A\), \(B\) und \(C\) ein Rechteck fest, wenn je zwei gegenüberliegende Seiten des Vierecks \(OABC\) gleiche Länge besitzen und zwei anliegende Seiten senkrecht aufeinander stehen (Orthogonalität).

 

\[\overline{OA} = \overline{CB} \quad \Longleftrightarrow \quad \left| \overrightarrow{OA} \right| = \left| \overrightarrow{CB} \right|\]

\[\overline{OC} = \overline{AB} \quad \Longleftrightarrow \quad \left| \overrightarrow{OC} \right| = \left| \overrightarrow{AB} \right|\]

z.B. \(\;\overrightarrow{OA} \perp \overrightarrow{OC}\)

 

Überprüfen der Seitenlängen:

 

\[\overrightarrow{OA} = \overrightarrow A = \begin {pmatrix} 0 \\ 60 \\ 0 \end {pmatrix}\]

\[\overrightarrow{CB} = \overrightarrow B - \overrightarrow C = \begin {pmatrix} -80 \\ 60 \\ 60 \end {pmatrix} - \begin {pmatrix} -80 \\ 0 \\ 60 \end {pmatrix} = \begin {pmatrix} 0 \\ 60 \\ 0 \end {pmatrix}\]

\[\Longrightarrow \quad \overrightarrow{OA} = \overrightarrow{CB} \quad \Longrightarrow \quad \overline{OA} = \overline{CB}\]

 

\[\overrightarrow{OC} = \overrightarrow C = \begin {pmatrix} -80 \\ 0 \\ 60 \end {pmatrix}\]

\[\overrightarrow{AB} = \overrightarrow B - \overrightarrow A = \begin {pmatrix} -80 \\ 60 \\ 60 \end {pmatrix} - \begin {pmatrix} 0 \\ 60 \\ 0 \end {pmatrix} = \begin {pmatrix} -80 \\ 0 \\ 60 \end {pmatrix}\]

\[\Longrightarrow \quad \overrightarrow{OC} = \overrightarrow{AB} \quad \Longrightarrow \quad \overline{OC} = \overline{AB}\]

 

Überprüfen der Orthogonalität:

\[\overrightarrow{OA} \circ \overrightarrow{OC} \overset{!}{=} 0\]

\[\begin {align*} \overrightarrow{OA} \circ \overrightarrow{OC} &= \overrightarrow A \circ \overrightarrow C \\[0.8em] &= \begin {pmatrix} 0 \\ 60 \\ 0 \end {pmatrix} \circ \begin {pmatrix} -80 \\ 0 \\ 60 \end {pmatrix} \\[0.8em] &= 0 \cdot (-80) + 60 \cdot 0 + 0 \cdot 60 \\[0.8em] &= 0 \end{align*}\]

 

\[\Longrightarrow \quad \overrightarrow{OA} \perp \overrightarrow{OC}\]

 

\(\Longrightarrow \quad\) Der Koordinatenursprung \(O\) legt mit den Punkten \(A\), \(B\) und \(C\) ein Rechteck fest.

 

Flächeninhalt des Rechtecks \(OABC\)

\[ \begin {align*} A_{OABC} &= \left| \overrightarrow{OA} \right| \cdot \left| \overrightarrow{OC} \right| \\[0.8em] &= \left| \overrightarrow A \right| \cdot \left| \overrightarrow C \right| \\[0.8em] &= \left| \begin {pmatrix} 0 \\ 60 \\ 0 \end {pmatrix} \right| \cdot \left| \begin {pmatrix} -80 \\ 0 \\ 60 \end {pmatrix} \right| \\[0.8em] &= \sqrt{0^2 + 60^2 + 0^2} \cdot \sqrt{(-80)^2 + 0^2 + 60^2} \\[0.8em] &= 60 \cdot 100 \\[0.8em] &= 6000 \end {align*} \]

 

Alternativer Lösungsansatz: Anwenden des Vektorprodukts

\[ \begin {align*} A_{OABC} &= \left| \overrightarrow{OA} \times \overrightarrow{OC} \right| \\[0.8em] &= \left| \overrightarrow A \times \overrightarrow C \right| \\[0.8em] &= \left| \begin {pmatrix} 0 \\ 60 \\ 0 \end {pmatrix} \times \begin {pmatrix} -80 \\ 0 \\ 60 \end {pmatrix} \right| \\[0.8em] &= \left| \begin {pmatrix} 60 & \cdot & 60 & - & 0 & \cdot & 0 \\ 0 & \cdot & (-80) & - & 0 & \cdot & 60 \\ 0 & \cdot & 0 & - & 60 & \cdot & (-80) \end {pmatrix} \right| \\[0.8em] &= \left| \begin {pmatrix} 3600 \\ 0 \\ 4800 \end {pmatrix} \right| \\[0.8em] &= \sqrt{3600^2 + 0^2 + 4800^2} \\[0.8em] &= 6000 \end {align*} \]

 

Zeichnung des Rechtecks \(OABC\)

B2011 G8 G I b 01

Lage des Rechtecks \(\,OABC\,\)

Weitere Lösungen dieser Aufgabengruppe: « Teilaufgabe a Teilaufgabe c »