Lösung zu Teilaufgabe 1a
\[f(x) = \frac{20x}{x^2 - 25}\,; \quad D_{f} = \mathbb R \,\backslash\,\{-5;5\}\]
Maximaler Definitionsbereich \(D_{f}\)
\[f(x) = \frac{20x}{x^2 - 25}\]
Die Nullstelle des Nennerterms von \(f\) bestimmt den maximalen Definitionsbereich der gebrochenrationalen Funktion \(f\).
\[\begin{align*} \underbrace{x^2 - 25}_{a^2\,-\,b^2\,=\,(a\,-\,b)\,\cdot\,(a\,+\,b)} &= 0 & &|\; \text{3. Binomische Formel anwenden} \\[0.8em] (x - 5) \cdot (x + 5) &= 0 \end{align*}\]
\[x_{1} = -5 \enspace \vee \enspace x_{2} = +5\]
oder:
\[\begin{align*} x^2 - 25 &= 0 & &| + 25 \\[0.8em] x^2 &= 25 & &| \;\sqrt{\quad} \\[0.8em] x_{1,2} &= \pm5 \end{align*}\]
\[\Longrightarrow \quad D_{f} = \mathbb R \,\backslash\,\{-5;5\}\]
Nachweis, dass \(G_{f}\) symmetrisch bezüglich des Koordinatenursprungs ist
\[f(x) = \frac{20x}{x^2 - 25}\]
Symmetrieverhalten
Symmetrieverhalten von Funktionsgraphen
\(f(-x) = f(x) \hspace{32px} \Longrightarrow \quad G_f\) ist achsensymmetrisch zur \(y\)-Achse
\(f(-x) = -f(x) \hspace{20px} \Longrightarrow \quad G_f\) ist punktsymmetrisch zum Ursprung
\[f(-x) = \frac{20 \cdot (-x)}{(-x)^2 - 25} = -\frac{20x}{x^2 - 25} = -f(x)\]
\(\Longrightarrow \quad\) \(G_{f}\) ist punktsymmetrisch bezüglich des Koordinatenursprungs.
Nullstelle von \(f\)
\[f(x) = \frac{20x}{x^2 - 25}\]
\[\begin{align*} f(x) = 0 \quad \Longrightarrow \quad 20x &= 0 \\[0.8em] x &= 0 \end{align*}\]
\[\Longrightarrow \quad N\,(0|0)\]
Gleichungen der drei Asymptoten von \(G_{f}\)
Senkrechte Asymptoten:
Asymptoten gebrochenrationaler Funktionen
Asymptoten gebrochenrationaler Funktionen
Eine Funktion \(f(x) = \dfrac{z(x)}{n(x)} = \dfrac{a_{m}x^{m} + a_{m - 1}x^{m - 1} + \dots + a_{1}x +a_{0}}{b_{n}x^{n} + b_{n - 1}x^{n - 1} + \dots + b_{1}x + b_{0}}\), die sich als Quotient zweier ganzrationaler Funktionen (Polynome) \(z(x)\) und \(n(x)\) darstellen lässt, heißt gebrochenrationale Funktion. Die Nullstellen des Nennerpolynoms \(n(x)\) können nicht in der Definitionsmenge \(D_{f}\) enthalten sein und werden als Definitionslücken bezeichnet.
Senkrechte Asymptoten
Wenn an einer Definitionslücke \(x_{0}\) einer gebrochenrationalen Funktion \(f\)
\(\begin{align*}\lim \limits_{x\,\to\,x_{0}^{-}}f(x) = +\infty \enspace &\text{oder} \enspace \lim \limits_{x\,\to\,x_{0}^{-}}f(x) = -\infty \\[0.8em] \text{und} \enspace \lim \limits_{x\,\to\,x_{0}^{+}}f(x) = +\infty \enspace &\text{oder} \enspace \lim \limits_{x\,\to\,x_{0}^{+}}f(x) = -\infty \end{align*}\)
gilt, so nennt man \(x_{0}\) eine Polstelle von \(f\) und die Gerade mit der Gleichung \(x = x_{0}\) senkrechte Asymptote des Graphen von \(f\)
Waagrechte und schräge Asymptoten
Der Graph einer gebrochenrationalen Funktion \(f\) hat für \(x \to - \infty\) bzw. \(x \to + \infty\) im Fall
\(m < n\): |
die \(x\)-Achse \((y = 0)\) als waagrechte Asymptote, |
\(m = n\): |
eine waagrechte Asymptote parallel zur \(\boldsymbol{x}\)-Achse mit der Gleichung \(y = \dfrac{a_{m}}{b_{n}}\), |
\(m = n + 1\): |
eine schräge Asymptote, |
\(m > n + 1\): |
keine waagrechte oder schräge Asymptote. |
\[f(x) = \frac{20x}{x^2 - 25}\,; \quad D_{f} = \mathbb R \,\backslash\,\{-5;5\}\]
\(G_f\) besitzt an den beiden Polstellen \(x = -5\) und \(x = 5\) (siehe maximaler Definitionsbereich) jeweils eine senkrechte Asymptote mit der Gleichung \(x = -5\) bzw. \(x = 5\).
Dritte Asymptote:
Asymptoten gebrochenrationaler Funktionen
Asymptoten gebrochenrationaler Funktionen
Eine Funktion \(f(x) = \dfrac{z(x)}{n(x)} = \dfrac{a_{m}x^{m} + a_{m - 1}x^{m - 1} + \dots + a_{1}x +a_{0}}{b_{n}x^{n} + b_{n - 1}x^{n - 1} + \dots + b_{1}x + b_{0}}\), die sich als Quotient zweier ganzrationaler Funktionen (Polynome) \(z(x)\) und \(n(x)\) darstellen lässt, heißt gebrochenrationale Funktion. Die Nullstellen des Nennerpolynoms \(n(x)\) können nicht in der Definitionsmenge \(D_{f}\) enthalten sein und werden als Definitionslücken bezeichnet.
Senkrechte Asymptoten
Wenn an einer Definitionslücke \(x_{0}\) einer gebrochenrationalen Funktion \(f\)
\(\begin{align*}\lim \limits_{x\,\to\,x_{0}^{-}}f(x) = +\infty \enspace &\text{oder} \enspace \lim \limits_{x\,\to\,x_{0}^{-}}f(x) = -\infty \\[0.8em] \text{und} \enspace \lim \limits_{x\,\to\,x_{0}^{+}}f(x) = +\infty \enspace &\text{oder} \enspace \lim \limits_{x\,\to\,x_{0}^{+}}f(x) = -\infty \end{align*}\)
gilt, so nennt man \(x_{0}\) eine Polstelle von \(f\) und die Gerade mit der Gleichung \(x = x_{0}\) senkrechte Asymptote des Graphen von \(f\)
Waagrechte und schräge Asymptoten
Der Graph einer gebrochenrationalen Funktion \(f\) hat für \(x \to - \infty\) bzw. \(x \to + \infty\) im Fall
\(m < n\): |
die \(x\)-Achse \((y = 0)\) als waagrechte Asymptote, |
\(m = n\): |
eine waagrechte Asymptote parallel zur \(\boldsymbol{x}\)-Achse mit der Gleichung \(y = \dfrac{a_{m}}{b_{n}}\), |
\(m = n + 1\): |
eine schräge Asymptote, |
\(m > n + 1\): |
keine waagrechte oder schräge Asymptote. |
Da der Grad des Zählerpolynoms \(z\) kleiner ist als der Grad des Nennerpolynoms \(n\), ist für \(x \to -\infty\) bzw. \(x \to +\infty\) die \(x\)-Achse mit der Gleichung \(y = 0\) waagrechte Asymptote von \(G_f\).
\(z < n \quad \Longrightarrow \quad y = 0\;\) ist waagrechte Asymptote von \(G_{f}\).
oder:
\[\begin{align*}\lim \limits_{x\,\to\,-\infty} f(x) &= \lim \limits_{x\,\to\,-\infty} \; \frac{20x}{x^2 - 25} \\[0.8em] &= \lim \limits_{x\,\to\,-\infty} \; \frac{20x}{x \cdot \left(x - \frac{25}{x}\right)} \\[0.8em] &= \lim \limits_{x\,\to\,-\infty} \; \frac{20}{x - \underbrace{\frac{25}{x}}_{\to\,0}} \\[0.8em]&= \lim \limits_{x\,\to\,-\infty} \; \frac{20}{x} = 0^{-}\end{align*}\]
\[\begin{align*}\lim \limits_{x\,\to\,+\infty} f(x) &= \lim \limits_{x\,\to\,+\infty} \; \frac{20x}{x^2 - 25} \\[0.8em] &= \lim \limits_{x\,\to\,+\infty} \; \frac{20x}{x \cdot \left(x - \frac{25}{x}\right)} \\[0.8em] &= \lim \limits_{x\,\to\,+\infty} \; \frac{20}{x - \underbrace{\frac{25}{x}}_{\to\,0}} \\[0.8em] &= \lim \limits_{x\,\to\,+\infty} \; \frac{20}{x} = 0^{+}\end{align*}\]
Für \(x \to -\infty\) nähert sich \(G_f\) der \(x\)-Achse asymptotisch von unten und für \(x \to +\infty\) nähert sich \(G_f\) der \(x\)-Achse asymptotisch von oben.
\(\Longrightarrow \quad y = 0\;\) ist waagrechte Asymptote von \(G_{f}\).