Mathematik Abitur Bayern 2015 A Analysis 1 - Aufgaben mit Lösungen
Teilaufgabe 1a
Gegeben ist die Funktion \(f \colon x \mapsto \left(x^3 - 8 \right) \cdot (2 + \ln x)\) mit maximalem Definitionsbereich D.
Geben Sie D an.
(1 BE)
Teilaufgabe 2a
Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f\), \(g\) und \(h\) mit \(f(x) = x^2 - x + 1\), \(g(x) = x^3 - x + 1\) und \(h(x) = x^4 + x^2 + 1\).
Abbildung 1 zeigt den Graphen einer der drei Funktionen. Geben Sie an, um welche Funktion es sich handelt. Begründen Sie, dass der Graph die anderen beiden Funktionen nicht darstellt.
Abb. 1
Abbildung 1 zeigt den Graphen einer der drei Funktionen. Geben Sie an, um welche Funktion es sich handelt. Begründen Sie, dass der Graph die anderen beiden Funktionen nicht darstellt.

(3 BE)
Teilaufgabe 2b
Die erste Ableitung von \(h\) ist \(h'\).
Bestimmen Sie den Wert von \(\displaystyle \int _{0}^{1}h'(x)\,dx\).
(2 BE)
Teilaufgabe 3a
Geben Sie einen positiven Wert für den Parameter \(a\) an, sodass die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \sin(ax)\) eine Nullstelle in \(\displaystyle x = \frac{\pi}{6}\) hat.
(1 BE)
Teilaufgabe 3b
Ermitteln Sie den Wert des Parameters \(b\), sodass die Funktion \(g \colon x \mapsto \sqrt{x^2 - b}\) den maximalen Definitionsbereich \(\mathbb R \,\backslash\; ]-2;2[\) besitzt.
(2 BE)
Teilaufgabe 3c
Erläutern Sie, dass die in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto 4 - e^x\) den Wertebereich \(]-\infty;4[\) besitzt.
(2 BE)
Teilaufgabe 4
Abbildung 2 zeigt den Graphen einer in \(\mathbb R\) definierten differenziebaren Funktion \(g \colon x \mapsto g(x)\). Mithilfe des Newton-Verfahrens soll ein Näherungswert für die Nullstelle \(a\) von \(g\) ermittelt werden. Begründen Sie, dass weder die \(x\)-Koordinate des Hochpunkts \(H\) noch die \(x\)-Koordinate des Tiefpunkts \(T\) als Startwert des Newton-Verfahrens gewählt werden kann.
Abb. 2
Abbildung 2 zeigt den Graphen einer in \(\mathbb R\) definierten differenziebaren Funktion \(g \colon x \mapsto g(x)\). Mithilfe des Newton-Verfahrens soll ein Näherungswert für die Nullstelle \(a\) von \(g\) ermittelt werden. Begründen Sie, dass weder die \(x\)-Koordinate des Hochpunkts \(H\) noch die \(x\)-Koordinate des Tiefpunkts \(T\) als Startwert des Newton-Verfahrens gewählt werden kann.
