Mathematik Abitur Bayern 2016 B Analysis 2 - Aufgaben mit Lösungen
Teilaufgabe 1a
Im Rahmen eines W-Seminars modellieren Schülerinnen und Schüler einen Tunnelquerschnitt, der senkrecht zum Tunnelverlauf liegt. Dazu beschreiben sie den Querschnitt der Tunnelwand durch den Graphen einer Funktion in einem Koordinatensystem. Der Querschnitt des Tunnelbodens liegt dabei auf der \(x\)-Achse, sein Mittelpunkt \(M\) im Ursprung des Koordinatensystems; eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität. Für den Tunnelquerschnitt sollen folgende Bedingungen gelten:
I Breite des Tunnelbodens: b = 10 m
II Höhe des Tunnels an der höchsten Stelle: h = 5 m
III Der Tunnel ist auf einer Breite von mindestens 6 m mindestens 4 m hoch.
Eine erste Modellierung des Querschnitts der Tunnelwand verwendet die Funktion \(p \colon x \mapsto -0{,}2x^{2} + 5\) mit dem Definitionsbereich \(D_{p} = [-5;5]\).
Zeigen Sie, dass die Bedingungen I und II in diesem Modell erfüllt sind. Berechnen Sie die Größe des spitzen Winkels, unter dem bei dieser Modellierung die linke Tunnelwand auf den Tunnelboden trifft.
(6 BE)
Teilaufgabe 1b
Die Schülerinnen und Schüler untersuchen nun den Abstand \(d(x)\) der Graphenpunkte \(P_{x}(x|p(x))\) vom Ursprung des Koordinatensystems.
Zeigen Sie, dass \(d(x) = \sqrt{0{,}04x^{4} - x^{2} + 25}\) gilt.
(3 BE)
Teilaufgabe 1c
Es gibt Punkte des Querschnitts der Tunnelwand, deren Abstand zu \(M\) minimal ist. Bestimmen Sie die \(x\)-Koordinaten der Punkte \(P_{x}\), für die \(d(x)\) minimal ist, und geben Sie davon ausgehend diesen minimalen Abstand an.
(5 BE)
Teilaufgabe 2a
Eine zweite Modellierung des Querschnitts der Tunnelwand verwendet eine Kosinusfunktion vom Typ \(k \colon x \mapsto 5 \cdot \cos(c \cdot x)\) mit \(c \in \mathbb R\) und Definitionsbereich \(D_{k} = [-5;5]\), bei der offensichtlich Bedingung II erfüllt ist.
Bestimmen Sie \(c\) so, dass auch Bedingung I erfüllt ist, und berechnen Sie damit den Inhalt der Querschnittfläche des Tunnels.
(zur Kontrolle: \(c = \frac{\pi}{10}\), Inhalt der Querschnittfläche: \(\frac{100}{\pi}\) m²)
(5 BE)
Teilaufgabe 2b
Zeigen Sie, dass Bedingung III weder bei der Modellierung mit \(p\) aus Aufgabe 1 noch bei einer Modellierung mit \(k\) erfüllt ist.
(2 BE)
Teilaufgabe 3a
Eine dritte Modellierung des Querschnitts der Tunnelwand, bei der ebenfalls die Bedingungen I und II erfüllt sind, verwendet die Funktion \(f \colon x \mapsto \sqrt{25 - x^{2}}\) mit dem Definitionsbereich \(D_{f} = [-5;5]\).
Begründen Sie, dass in diesem Modell jeder Punkt des Querschnitts der Tunnelwand von der Bodenmitte \(M\) den Abstand 5 m hat. Zeichnen Sie den Graphen von \(f\) in ein Koordinatensystem ein (Platzbedarf im Hinblick auf spätere Aufgaben: \(-5 \leq x \leq 9\), \(-1 \leq y \leq 13\)) und begründen Sie, dass bei dieser Modellierung auch Bedingung III erfüllt ist.
(5 BE)
Teilaufgabe 3b
Betrachtet wird nun die Integralfunktion \(\displaystyle F \colon x \mapsto \int_{0}^{x} f(t)\,dt\) mit Definitionsbereich \(D_{F} = [-5;5]\).
Zeigen Sie mithilfe einer geometrischen Überlegung, dass \(F(5) = \frac{25}{4}\pi\) gilt.
Einer der Graphen A, B und C ist der Graph von \(F\). Entscheiden Sie, welcher dies ist, und begründen Sie Ihre Entscheidung, indem Sie erklären, warum die beiden anderen Graphen nicht infrage kommen.