Mathematik Abitur Bayern 2016 B Stochastik 1 - Aufgaben mit Lösungen

Teilaufgabe 1a

Ein Getränkehersteller führt eine Werbeaktion durch, um die Verkaufszahlen seiner Saftschorlen zu erhöhen. Bei 100000 der für die Werbeaktion produzierten zwei Millionen Flaschen wird auf der Innenseite des Verschlusses eine Marke für einen Geldgewinn angebracht. Von den Gewinnmarken sind 12000 jeweils 5 € wert, der Rest ist jeweils 1 € wert. Alle Flaschen der Werbeaktion werden zufällig auf Kästen verteilt. Im Folgenden werden nur Flaschen aus der Werbeaktion betrachtet.

Es wird eine Flasche geöffnet. Betrachtet werden folgende Ereignisse:

\(A\): „Der Verschluss enthält eine Gewinnmarke."

\(B\): „Der Verschluss enthält eine Gewinnmarke im Wert von 1 €."

Berechnen Sie die Wahrscheinlichkeiten \(P(A)\) und \(P(B)\).

(2 BE)

Teilaufgabe 1b

Es werden mehrere Flaschen geöffnet und für jede dieser Flaschen wird festgestellt, ob das Ereignis \(A\) eintritt. Begründen Sie, dass dieses Zufallsexperiment näherungsweise durch eine Bernoullikette beschrieben werden kann.

(2 BE)

Teilaufgabe 1c

Im Folgenden gilt beim Öffnen einer Flasche steht \(P(A) = 0{,}05\) und \(P(B) = 0{,}044\).

Es werden nacheinander zehn Flaschen geöffnet. Berechnen Sie die Wahrscheinlichkeit dafür, dass sich erstmals in der fünften Flasche eine Gewinnmarke befindet. 

(2 BE)

Teilaufgabe 1e

Berechnen Sie den Gesamtwert der Gewinnmarken, die Kunden beim Öffnen der 20 Flaschen eines Kastens im Mittel in den Verschlüssen finden.

(3 BE)

Teilaufgabe 2

Nachdem die zwei Millionen Flaschen verkauft sind, wird die Werbeaktion fortgesetzt. Der Getränkehersteller verspricht, dass weiterhin jede 20. Flasche eine Gewinnmarke enthält. Aufgrund von Kundenäußerungen vermutet der Filialleiter eines Getränkemarkts jedoch, dass der Anteil der Saftschorle-Flaschen mit einer Gewinnmarke im Verschluss nun geringer als 0,05 ist, und beschwert sich beim Getränkehersteller.

Der Getränkehersteller bietet ihm an, anhand von 200 zufällig ausgewählten Flaschen einen Signifikanztest für die Nullhypothese „Die Wahrscheinlichkeit dafür, in einer Flasche eine Gewinnmarke zu finden, beträgt mindestens 0,05." auf einem Signifikanzniveau von 1 % durchzuführen. Für den Fall, dass das Ergebnis des Tests im Ablehnungsbereich der Nullhypothese liegt, verspricht der Getränkehersteller, seine Abfüllanlage zu überprüfen und die Kosten für eine Sonderwerbeaktion des Getränkemarkts zu übernehmen.

Ermitteln Sie den Ablehnungsbereich der Nullhypothese und bestimmen Sie anschließend unter der Annahme, dass im Mittel nur 3 % der Saftschorle-Flaschen eine Gewinnmarke enthalten, die Wahrscheinlichkeit dafür, dass der Getränkemarkt nicht in den Genuss einer kostenlosen Sonderwerbeaktion kommt.

(7 BE)