Mathematik Abitur Bayern 2018 B Analysis 2 - Aufgaben mit Lösungen

Teilaufgabe 1a

Abbildung 1 Aufgabe 1 Analysis 2 Mathematik Abitur Bayern 2018Abb. 1

Abbildung 1 zeigt den Graphen \(G_{f}\) einer ganzrationalen Funktion \(f\) drittens Grades mit Definitions­menge \(\mathbb R\). \(G_{f}\) schneidet die \(x\)-Achse bei \(x = 0\), \(x = 5\) und \(x = 10\) und verläuft durch den Punkt \((1|2)\).

Ermitteln Sie einen Funktionsterm von \(f\).

(zur Kontrolle: \(f(x) = \frac{1}{18} \cdot (x^{3} - 15x^{2} + 50x)\))

(4 BE)

Teilaufgabe 1b

Zeigen Sie, dass \(G_{f}\) im Punkt \(W(5|0)\) einen Wendepunkt besitzt, und ermitteln Sie eine Gleichung der Tangente an \(G_{f}\) im Punkt \(W\).

(6 BE)

Teilaufgabe 1c

\(G_{f}\) geht aus dem Graphen der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto \frac{1}{18} \cdot (x^{3} - 25x)\) durch Verschiebung in positive \(x\)-Richtung hervor. Ermitteln Sie, um wie viel der Graph von \(g\) dazu verschoben werden muss. Begründen Sie mithilfe der Funktion \(g\), dass der Graph von \(f\) symmetrisch bezüglich seines Wendepunkts ist.

(4 BE)

Teilaufgabe 1d

Im Folgenden wird die in \(\mathbb R\) definierte Funktion \(F_{1}\) mit \(\displaystyle F_{1}(x) = \int_{1}^{x} f(t) dt\) betrachtet.

\(F_{1}\) hat für \(0 \leq x \leq 10\) zwei ganzzahlige Nullstellen. Geben Sie diese an und begründen Sie Ihre Angabe.

(3 BE)

Teilaufgabe 1e

Begründen Sie mithilfe von Abbildung 1, dass \(F_{1}\) mindestens eine weitere positive Nullstelle hat.

(2 BE)

Teilaufgabe 1f

Begründen Sie, dass \(F_{1}\) höchstens vier Nullstellen hat.

(2 BE)

Teilaufgabe 1g

Für \(0 \leq x \leq 5\) gilt, dass der Graph von \(f\) und der Graph einer trigonometrischen Funktion \(h\)

●  die gleichen Schnittpunkte mit der \(x\)-Achse besitzen,

●  beide nicht unterhalb der \(x\)-Achse verlaufen,

●  jeweils mit der \(x\)-Achse eine Fläche des Inhalts \(\frac{625}{72}\) einschließen.

Bestimmen Sie einen Term einer solchen Funktion \(h\).

(6 BE)

Teilaufgabe 2a

Die Kosten, die einem Unternehmen bei der Herstellung einer Flüssigkeit entstehen, können durch die Funktion \(K \colon x \mapsto x^{3} - 12x^{2} + 50x + 20\) mit \(x \in [0;9]\) beschrieben werden. Dabei gibt \(K(x)\) die Kosten in 1000 Euro an, die bei der Produktion von \(x\) Kubikmetern der Flüssigkeit insgesamt entstehen. Abbildung 2 zeigt den Graphen von \(K\).

Abbildung 2 Aufgab 2 Analysis 2 Mathematik Abitur Bayern 2018 BAbb. 2

Geben Sie mithilfe von Abbildung 2

α)  die Produktionsmenge an, bei der die Kosten 125 000 Euro betragen.

β)  das Monotonieverhalten von \(K\) an und deuten Sie Ihre Angabe im Sachzusammenhang.

(3 BE)

Teilaufgabe 2b

Die Funktion \(E\) mit \(E(x) = 23x\) gibt für \(0 \leq x \leq 9\) den Erlös (in 1000 Euro) an, den das Unternehmen beim Verkauf von \(x\) Kubikmetern der Flüssigkeit erzielt. Für die sogenannte Gewinnfunktion \(G\) gilt \(G(x) = E(x) - K(x)\). Positive Werte von \(G\) werden als Gewinn bezeichnet, negative als Verlust.

Zeigen Sie, dass das Unternehmen keinen Gewinn erzielt, wenn vier Kubikmeter der Flüssigkeit verkauft werden.

(2 BE)

Teilaufgabe 2c

Zeichnen Sie den Graphen von \(E\) in Abbildung 2 ein. Bestimmen Sie mithilfe der so entstehenden Darstellung den Bereich, in dem die verkaufte Menge der Flüssigkeit liegen muss, damit das Unternehmen einen Gewinn erzielt.

(3 BE)

Teilaufgabe 2d

Berechnen Sie, welche Menge der Flüssigkeit verkauft werden muss, damit das Unternehmen den größten Gewinn erzielt.

(5 BE)