Mathematik Abitur Bayern 2019 A Analysis 1 - Aufgaben mit Lösungen

Teilaufgabe 1

Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{e^{2x}}{x}\) mit dem Definitionsbereich \(D_{f} = \mathbb R \backslash \{0\}\).

Bestimmen Sie Lage und Art des Extrempunkts des Graphen von f.

(5 BE)

Teilaufgabe 2a

Gegeben ist die in \(\mathbb R \backslash \{0\}\) definierte Funktion \(f \colon x \mapsto 1 - \dfrac{1}{x^{2}}\), die die Nullstellen \(x_{1} = -1\) und \(x_{2} = 1\) hat. Abbildung 1 zeigt den Graphen von f, der symmetrisch bezüglich der \(y\)-Achse ist. Weiterhin ist die Gerade \(g\) mit der Gleichung \(y = -3\) gegeben.

Abbildung 1 Aufgabe 2a Analysis 1 Mathematik Abitur Bayern 2019 AAbb. 1

Zeigen Sie, dass einer der Punkte, in denen \(g\) den Graphen von \(f\) schneidet, die \(x\)-Koordinate \(\frac{1}{2}\) hat.

(1 BE)

Teilaufgabe 2b

Bestimmen Sie rechnerisch den Inhalt der Fläche, die der Graph von f, die \(x\)-Achse und die Gerade \(g\) einschließen.

(4 BE)

Teilaufgabe 3a

Die nebenstehende Abbildung 2 zeigt den Graphen einer Funktion \(f\).

Abbildung 2 Analysis 1 Mathematik Abitur Bayern 2019 AAbb. 2

Einer der folgenden Graphen I, II und III gehört zur ersten Ableitungsfunktion von \(f\). Geben Sie diesen an. Begründen Sie, dass die beiden anderen Graphen dafür nicht infrage kommen.

Graph I Analysis 1 Mathematik Abitur Bayern 2019 A

Graph II Analysis 1 Mathematik Abitur Bayern 2019 A

Graph III Analysis 1 Mathematik Abitur Bayern 2019 AAbb. 3

(3 BE)

Teilaufgabe 3b

Die Funktion \(F\) ist eine Stammfunktion von \(f\). Geben Sie das Monotonieverhalten von \(F\) im Intervall \([1;3]\) an. Begründen Sie Ihre Angabe.

(2 BE)

Teilaufgabe 4a

Betrachtet wird eine Schar von Funktionen \(h_{k}\) mit \(k \in \mathbb R^{+}\), die sich nur in ihren jeweiligen Definitionsbereichen \(D_{k}\) unterscheiden.

Es gilt \(h_{k} \colon x \mapsto \cos{x}\) mit \(D_{k} = [0;k]\).

Abbildung 4 zeigt den Graphen der Funktion \(h_{7}\). Geben Sie den größtmöglichen Wert von \(k\) an, sodass die zugehörige Funktion \(h_{k}\) umkehrbar ist. Zeichnen Sie für diesen Wert von \(k\) den Graphen der Umkehrfunktion von \(h_{k}\) in Abbildung 4 ein und berücksichtigen Sie dabei insbesondere den Schnittpunkt der Graphen von Funktion und Umkehrfunktion.

Abbildung 4 Aufgabe 4 Analysis 1 Mathematik Abitur Bayern 2019 A

(3 BE)

Teilaufgabe 4b

Geben Sie den Term einer in \(\mathbb R\) definierten und umkehrbaren Funktion \(j\) an, die folgende Bedingungen erfüllt: Der Graph von \(j\) und der Graph der Umkehrfunktion von \(j\) haben keinen gemeinsamen Punkt.

(2 BE)