Teilaufgabe 1a

Gegeben sind die beiden Kugeln \(k_{1}\) mit Mittelpunkt \(M_{1}(1|2|3)\) und Radius \(5\) sowie \(k_{2}\) mit Mittelpunkt \(M_{2}(-3|-2|1)\) und Radius \(5\).

Zeigen Sie, dass sich \(k_{1}\) und \(k_{2}\) schneiden.

(2 BE)

Lösung zu Teilaufgabe 1a

 

\[k_{1} \colon M_{1}(1|2|3); \; r_{1} = 5\]

\[k_{2} \colon M_{2}(-3|-2|1); \; r_{2} = 5\]

 

Die Kugeln k₁ und k₂ schneiden sich, wenn der Abstand der Mittelpunkte M₁ und M₂ kleiner ist als die Summe der Radien r₁ und r₂

Die Kugeln \(k_{1}\) und \(k_{2}\) schneiden sich, wenn der Abstand \(\textcolor{#0087c1}{d(M_{1};M_{2}) = \overline{M_{1}M_{2}}}\) kleiner ist als die Summe der Radien \(\textcolor{#cc071e}{r_{1}}\) und \(\textcolor{#cc071e}{r_{2}}\)

 

Bedingung \(\textcolor{#0087c1}{\overline{M_{1}M_{2}}} < \textcolor{#cc071e}{r_{1} + r_{2}}\) nachweisen:

\[\begin{align*} \textcolor{#0087c1}{\overline{M_{1}M_{2}}} &= \vert \overline{M_{1}M_{2}} \vert  \\[0.8em] &= \vert \overline{M_{2}} - \overline{M_{1}} \vert \\[0.8em] &= \left| \begin{pmatrix}  -3 \\ -2 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right| \\[0.8em] &= \left| \begin{pmatrix} -4 \\ -4 \\ -2 \end{pmatrix} \right| \\[0.8em] &= \sqrt{(-4)^{2} + (-4)^{2} + (-2)^{2}} \\[0.8em] &= \sqrt{36} \\[0.8em] &= \textcolor{#0087c1}{6} \end{align*}\]

 

\[\textcolor{#cc071e}{r_{1} + r_{2}} = 5 + 5 = \textcolor{#cc071e}{10}\]

 

\[\textcolor{#0087c1}{6} < \textcolor{#cc071e}{10}\]

 

Also schneiden sich die Kugeln \(k_{1}\) und \(k_{2}\). 

Weitere Lösungen dieser Aufgabengruppe: Teilaufgabe 1b »