Mathematik Abitur Bayern 2020 A Analysis 1 - Aufgaben mit Lösungen

Teilaufgabe 1a

Gegeben ist die Funktion \(h \colon x \mapsto x \cdot \ln{(x^{2})}\) mit maximalem Definitionsbereich \(D_{h}\).

Geben Sie \(D_{h}\) an und zeigen Sie, dass für den Term der Ableitungsfunktion \(h'\) gilt: \(h'(x) = \ln{(x^{2})} + 2\).

(2 BE)

Teilaufgabe 1b

Bestimmen Sie die Koordinaten des im II. Quadranten liegenden Hochpunkts des Graphen von \(h\).

(3 BE)

Teilaufgabe 2a

Die Abbildung 1 zeigt den Graphen \(G_{f'}\) der Ableitungsfunktion \(f'\) einer in \(\mathbb R\) definierten ganzrationalen Funktion \(f\). Nur in den Punkten \((-4|f'(-4))\) und \((5|f'(5))\) hat der Graph \(G_{f'}\) waagrechte Tangenten.

Abbildung 1 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2020

Begründen Sie, dass \(f\) genau eine Wendestelle besitzt. 

(2 BE)

Teilaufgabe 2b

Es gibt Tangenten an den Graphen von \(f\), die parallel zur Winkelhalbierenden des I. und III. Quadranten sind. Ermitteln Sie anhand des Graphen \(\mathbf{G_{f'}}\) der Ableitungsfunktion \(f'\) in der Abbildung 1 Näherungswerte für die \(x\)-Koordinaten derjenigen Punkte, in denen der Graph von \(f\) jeweils eine solche Tangente hat.

(2 BE)

Teilaufgabe 3a

Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f \colon x \mapsto x^{2} + 4\) und \(g_{m} \colon x \mapsto m \cdot x\) mit \(m \in \mathbb R\). Der Graph von \(f\) wird mit \(G_{f}\) und der Graph von \(g_{m}\) mit \(G_{m}\) bezeichnet.

Skizzieren Sie \(G_{f}\) in einem Koordinatensystem. Berechnen Sie die Koordinaten des gemeinsamen Punkts der Graphen \(G_{f}\) und \(G_{4}\).

(3 BE)

Teilaufgabe 3b

Es gibt Werte von \(m\), für die die Graphen \(G_{f}\) und \(G_{m}\) jeweils keinen gemeinsamen Punkt haben. Geben Sie diese Werte von \(m\) an.

(2 BE)

Teilaufgabe 4a

Gegeben ist die Funktion \(g\) mit \(g(x) = 0{,}7 \cdot e^{0{,}5x} - 0{,}7\) und \(x \in \mathbb R\). Die Funktion \(g\) ist umkehrbar. Die Abbildung 2 zeigt den Graphen \(G_{g}\) von \(g\) sowie einen Teil des Graphen \(G_{h}\) der Umkehrfunktion \(h\) von \(g\).

Abbildung 2 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2020

Zeichnen Sie in die Abbildung 2 den darin fehlenden Teil von \(G_{h}\) ein.

(2 BE)

Teilaufgabe 4b

Betrachtet wird das von den Graphen \(G_{g}\) und \(G_{h}\) eingeschlossene Flächenstück. Schraffieren Sie den Teil dieses Flächenstücks, dessen Inhalt mit dem Term \(\displaystyle 2 \cdot \int_{0}^{2{,}5} (x - g(x))dx\) berechnet werden kann.

(2 BE)

Teilaufgabe 4c

Geben Sie den Term einer Stammfunktion der in \(\mathbb R\) definierten Funktion \(k \colon x \mapsto x - g(x)\) an.

(2 BE)