Teilaufgabe c

Begründen Sie, dass die Ereignisse \(A\) und \(R\) abhängig sind.

(2 BE) 

Lösung zu Teilaufgabe c

 

Stochastische Abhängigkeit/Unabhängigkeit

 

Aus Teilaufgabe b ist bekannt:

 

\[P(A \cap R) = 0{,}42\,; \quad P(A) = 0{,}7\,; \quad P(R) = 0{,}54\]

 

Ereignisse \(A\) und \(R\) auf stochastische Unabhängigkeit prüfen:

 

Die Ereignisse \(A\) und \(R\) sind stochastisch unabhängig, wenn \(P(A \cap R) = P(A) \cdot P(R)\) gilt.

 

\[P(A) \cdot P(R) = 0{,}7 \cdot 0{,}54 = 0{,}378\]

 

\[\Longrightarrow \quad P(A \cap R) = 0{,}42 \neq 0{,}378 = P(A) \cdot P(R)\]

 

\(\Longrightarrow \quad\) Die Ereignisse \(A\) und \(R\) sind stochastisch abhängig.

 

Begründung mit Baumdiagramm:

 

Baumdiagramm mit bedingten Wahrscheinlichkeiten an den Ästen der zweiten Stufe

Baumdiagramm aus Teilaufgabe b

 

Die Ereignisse \(A\) und \(R\) sind stochastisch abhängig, weil an den Ästen der zweiten Stufe des Baumdiagramms aus Teilaufgabe b unterschiedliche Wahrscheinlichkeiten stehen.

 

Begründung mit Vierfeldertafel:

 

  \(R\) \(\overline R\)  
\(A\) \(P(A \cap R) = 0{,}42\) \(P(A \cap \overline R) = 0{,}28\) \(P(A) = 0{,}7\)
\(\overline A\) \(P(\overline A \cap R) = 0{,}12\) \(P(\overline A \cap \overline R) = 0{,}18\) \(P(\overline A) = 0{,}3\)
  \(P(R) = 0{,}54\) \(P(\overline R) = 0{,}46\) \(1\)
 

Vierfeldertafel aus Teilaufgabe b

 

\[P(A \cap R) = 0{,}42 \neq 0{,}378 = 0{,}7 \cdot 0{,}54 = P(A) \cdot P(R)\]

\[P(A \cap \overline{R}) = 0{,}28 \neq 0{,}322 = 0{,}7 \cdot 0{,}46 = P(A) \cdot P(\overline{R})\]

\[P(\overline{A} \cap R) = 0{,}12 \neq 0{,}162 = 0{,}3 \cdot 0{,}54 = P(\overline{A}) \cdot P(R)\]

\[P(\overline{A} \cap \overline{R}) = 0{,}18 \neq 0{,}138 = 0{,}3 \cdot 0{,}46 = P(\overline{A}) \cdot P(\overline{R})\]

 

Die Ereignisse \(A\) und \(R\) sind stochastisch abhängig, weil die Vierfeldertafel keine Multiplikationstafel der Wahrscheinlichkeiten ist. Die Einträge der inneren Felder (Wahrscheinlichkeiten der Schnittmengen) sind nicht das Produkt der Einträge der zugehörigen Randfelder (Wahrscheinlichkeiten der Ereignisse \(A\) und \(R\) bzw. deren Gegenereignisse). 

Weitere Lösungen dieser Aufgabengruppe: « Teilaufgabe b Teilaufgabe d »