Mathematik Beispiel-Abitur Bayern 2014 B Analysis 1 - Aufgaben mit Lösungen

Teilaufgabe 1a

Gegeben ist die Funktion \(h\,\colon x \mapsto -\frac{1}{2}x^2 + 2\) mit Definitionsbereich \(\mathbb R\). Der Graph von \(h\) wird mit \(G_h\) bezeichnet.

Geben Sie die Nullstellen von \(h\) an und zeichnen Sie \(G_h\) in ein Koordinatensystem ein.

(3 BE) 

Teilaufgabe 1b

Dem Flächenstück, das \(G_h\) mit der \(x\)-Achse vollständig einschließt, werden Rechtecke so einbeschrieben, dass jeweils eine Seite des Rechtecks auf der \(x\)-Achse liegt. Berechnen Sie den größtmöglichen Flächeninhalt \(A\) eines solchen Rechtecks.

(Ergebnis: \(A = \frac{16}{9}\sqrt{3}\))

(6 BE) 

Teilaufgabe 1c

Berechnen Sie den Anteil (in Prozent), den das Rechteck mit dem Flächeninhalt \(A\) am Inhalt des Flächenstücks einnimmt, das \(G_h\) mit der \(x\)-Achse vollständig einschließt.

(4 BE) 

Teilaufgabe 2a

Gegeben sind die in \(\mathbb R\) definierten Funktionen \(p\,\colon x \mapsto e^{-\frac{1}{4}x}\) und \(q\,\colon x \mapsto e^{-\frac{1}{4}x} \cdot \cos x\). Die Abbildung zeigt den Graphen \(G_q\) von \(q\) füe \(x \geq 0\).

Abbildung zu Teilaufgabe 2a, Graph der Funktion q

Untersuchen Sie das Monotonieverhalten des Graphen von \(p\) und geben Sie das Verhalten von \(p\) für \(x \to +\infty\) und \(x \to -\infty\) an.

(4 BE) 

Teilaufgabe 2b

Berechnen Sie die Funktionswerte \(p(0)\), \(p(\pi)\), \(p(2\pi)\), \(p(3\pi)\) und \(p(4\pi)\). Zeichnen Sie für \(x \geq 0\) den Graphen von \(p\) sowie den Graphen der in \(\mathbb R\) definierten Funktion \(-p\,\colon x \mapsto -p(x)\) unter Berücksichtigung der bisherigen Ereignisse in die Abbildung ein.

(4 BE) 

Teilaufgabe 2c

Der Funktionsterm von \(q\) entsteht aus dem Term der in \(\mathbb R\) definierten Kosinusfunktion \(x \mapsto \cos x\) durch Multiplikation mit \(p(x)\). Beschreiben Sie, wie sich der Graph von \(q\) aufgrund dieser Multiplikation vom Graphen der Kosinusfunktion unterscheidet. Gehen Sie dabei auch auf die Nullstellen von \(q\) und die Funktionswerte \(q(n\pi)\) mit \(n \in \mathbb Z\) ein.

(3 BE) 

Teilaufgabe 2d

Berechnen Sie den Term \(q'(x)\) der ersten Ableitung von \(q\) und weisen Sie für die Funktion \(q\) nach, dass für die Extremstellen \(\tan x = -0{,}25\) gilt. Zeigen Sie damit, dass die Extremstellen von \(q\) nicht mit den Extremstellen der Kosinusfunktion übereinstimmen.

(6 BE) 

Teilaufgabe 2e

Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind; machen Sie jeweils Ihre Entscheidung plausibel.

α) \(\lim \limits_{x\,\to\,-\infty} q(x) = +\infty\)

β) \(\lim \limits_{x\,\to\,+\infty} q(x) = 0\)

(4 BE) 

Teilaufgabe 2f

Die in \(\mathbb R\) definierte Funktion \(Q\,\colon x \mapsto \frac{16}{17}e^{-\frac{1}{4}x} \cdot \left( \sin x - \frac{1}{4}\cos x \right)\) ist eine Stammfunktion von \(q\).

Zeigen Sie rechnerisch, dass \(\displaystyle \int_0^{2\pi} q(x)\,dx > 0\) gilt, und deuten Sie die Aussage dieser Ungleichung am Graphen von \(q\).

(3 BE) 

Teilaufgabe 2g

Es gibt Werte \(a \in \mathbb R^+\), für die \(\displaystyle \int_0^{a} q(x)\,dx < 0\) gilt. Geben Sie einen solchen Wert an und begründen Sie Ihre Antwort ohne zu rechnen.

(3 BE)