Baumdiagramm

  • Die beiden Baumdiagramme gehören zum selben Zufallsexperiment mit den Ereignissen \(A\) und \(B\).

    Berechnen Sie die Wahrscheinlichkeit \(P(B)\) und ergänzen Sie anschließend an allen Ästen des rechten Baumdiagramms die zugehörigen Wahrscheinlichkeiten.

     

    Abbildung Baumdiagramm links zu Teilaufgabe 1 - Stochastik 1 - Prüfungsteil A - Mathematik Abitur Bayern 2016
    Abbildung Baumdiagramm rechts zu Teilaufgabe 1 - Stochastik 1 - Prüfungsteil A - Mathematik Abitur Bayern 2016

     

    (Teilergebnis: \(P(B) = 0{,}5\))

    (5 BE)

  • Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl \((Z)\) oder zum zweiten Mal Wappen \((W)\) oben liegt. Als Ergebnismenge wird festgelegt: \(\{ZZ; WW; ZWZ; ZWW; WZZ; WZW\}\).

    Begründen Sie, dass dieses Zufallsexperiment kein Laplace-Experiment ist.

    (2 BE)

  • Ein Pharmaunternehmen hat einen Hauttest zum Nachweis einer Tierhaarallergie entwickelt. Im Rahmen einer klinischen Studie zeigt sich, dass der Hauttest bei einer aus der Bevölkerung Deutschlands zufällig ausgewählten Person mit einer Wahrscheinlichkeit von 39,5 % ein positives Testergebnis liefert. Leidet eine Person an einer Tierhaarallergie, so ist das Testergebnis mit einer Wahrscheinlichkeit von 85 % positiv. Das Testergebnis ist jedoch bei einer Person, die nicht an einer Tierhaarallergie leidet, mit einer Wahrscheinlichkeit von 35 % ebenfalls positiv.

    Ermitteln Sie, welcher Anteil der Bevölkerung Deutschlands demnach allergisch auf Tierhaare reagiert.

    (Ergebnis: 9 %)

    (4 BE)

  • Aus der Bevölkerung Deutschlands wird eine Person zufällig ausgewählt und getestet. Beschreiben Sie das Ereignis, dessen Wahrscheinlichkeit im Sachzusammenhang mit dem Term \(0{,}09 \cdot 0{,}15 + 0{,}91 \cdot 0{,}35\) berechnet wird.

    (2 BE)

  • Schwarze und weiße Kugeln sind wie folgt auf drei Urnen verteilt:

    Abbildung Teilaufgabe 2 Stochastik 2 Mathematik Abitur Bayern 2017 A

    Aus Urne A wird zunächst eine Kugel zufällig entnommen und in Urne B gelegt. Anschließend wird aus Urne B eine Kugel zufällig entnommen und in Urne C gelegt. Bestimmen Sie die Wahrscheinlichkeit dafür, dass sich danach in Urne C zwei weiße Kugeln und eine schwarze Kugel befinden.

    (2 BE)

  • Die drei Urnen mit den in der Abbildung dargestellten Inhalten bilden den Ausgangspunkt für folgendes Spiel:

    Es wird zunächst ein Einsatz von 1 € eingezahlt. Anschließend wird eine der drei Urnen zufällig ausgewählt und danach aus dieser Urne eine Kugel zufällig gezogen. Nur dann, wenn diese Kugel schwarz ist, wird ein bestimmter Geldbetrag ausgezahlt.

    Ermitteln Sie, wie groß dieser Geldbetrag sein muss, damit bei diesem Spiel auf lange Sicht Einsätze und Auszahlungen ausgeglichen sind.

    (3 BE)

  • Ein Großhändler bietet Samenkörner für Salatgurken in zwei Qualitätsstufen an. Ein Samenkorn der höheren Qualität A keimt mit einer Wahrscheinlichkeit von 95 %, eines der Qualität B mit einer Wahrscheinlichkeit von 70 %. Ein Anbaubetrieb kauft Samenkörner beider Qualitätsstufen, 65 % aller gekauften Samenkörner sind von der Qualität A.

    In einem Gedankenexperiment werden die eingekauften Samenkörner zusammengeschüttet und gemischt. Bestimmen Sie mithilfe eines beschrifteten Baumdiagramms

    α) die Wahrscheinlichkeit dafür, dass ein zufällig ausgewähltes Samenkorn keimt;

    β) die Wahrscheinlichkeit dafür, dass ein zufällig ausgewähltes Samenkorn, das nach der Saat keimt, von der Qualität B ist.

    (5 BE)

  • Keimt ein Samenkorn, so wächst daraus eine Pflanze heran, die aufgrund schädlicher Einflüsse jedoch in manchen Fällen keine Gurken trägt. Bei einem gekeimten Samenkorn der Qualität A entsteht mit einer Wahrscheinlichkeit von 85 % eine fruchtragende Pflanze, bei einem gekeimten Samenkorn der Qualität B mit einer Wahrscheinlichkeit von 75 %. Vereinfachend wird davon ausgegangen, dass - unabhängig von der Qualität der Samenkörner - von jeder fruchtragenden Pflanze gleich viele Gurken geerntet werden können.

    Ein Samenkorn der Qualität A kostet 17 Cent, eines der Qualität B 12 Cent. Entscheiden Sie durch Rechnung, ob es für einen Anbaubetrieb finanziell günstiger ist, sich auf Samenkörner der Qualität A zu beschränken, oder ob es finanziell günstiger ist, sich auf Samenkörner der Qualität B zu beschränken, wenn er alle Gurken zum selben Preis verkauft.

    (5 BE)

  • Das abgebildete Baumdiagramm stellt ein zweistufiges Zufallsexperiment mit den Ereignissen \(A\) und \(B\) sowie deren Gegenereignissen \(\overline{A}\) und \(\overline{B}\) dar.

    Abbildung Aufgabe 2a Stochastik 1 Mathematik Abitur Bayern 2018 A

    Bestimmen Sie den Wert von \(p\) so, dass das Ereignis \(B\) bei diesem Zufallsexperiment mit der Wahrscheinlichkeit \(0,3\) eintritt.

    (2 BE)

  • Das abgebildete Baumdiagramm stellt ein zweistufiges Zufallsexperiment mit den Ereignissen \(A\) und \(B\) sowie deren Gegenereignissen \(\overline{A}\) und \(\overline{B}\) dar.

    Abbildung Aufgabe 2a Stochastik 1 Mathematik Abitur Bayern 2018 A

    Bestimmen Sie den Wert von \(p\) so, dass das Ereignis \(B\) bei diesem Zufallsexperiment mit der Wahrscheinlichkeit \(0,3\) eintritt.

    (2 BE)

  • Das Glücksrad wird zweimal gedreht. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Summe der erzielten Zahlen mindestens 11 beträgt.

    (3 BE)

  • Das Glücksrad wird zweimal gedreht. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Summe der erzielten Zahlen mindestens 11 beträgt.

    (3 BE)

  • Das Baumdiagramm in Abbildung 2 gehört zu einem Zufallsexperiment mit den stochastisch unabhängigen Ereignissen \(A\) und \(B\). Bestimmen Sie die Wahrscheinlichkeit des Ereignisses \(B\).

    Abbildung 2 Aufgabe 3 Stochastik 2 Mathematik Abitur Bayern 2019 AAbb. 2

     

    (3 BE)

  • Gegeben sind grüne und rote Würfel, deren Seitenflächen unterschiedlich beschriftet sind und beim Werfen mit jeweils gleicher Wahrscheinlichkeit auftreten. Jeder grüne Würfel trägt auf fünf Seitenflächen die Augenzahl 1 und auf einer die Augenzahl 6. Jeder rote Würfel trägt auf jeweils zwei Seitenflächen die Augenzahlen 1, 3 bzw. 6.

    In einer Urne befinden sich drei grüne Würfel und zwei rote Würfel. Der Urne werden mit einem Griff zwei Würfel zufällig entnommen. Geben Sie einen Term an, mit dem man die Wahrscheinlichkeit dafür bestimmen kann, dass ein roter Würfel und ein grüner Würfel entnommen werden.

    (2 BE)

  • Ein grüner Würfel und ein roter Würfel werden gleichzeitig geworfen. Die Zufallsgröße \(X\) beschreibt die Summe der beiden geworfenen Augenzahlen. Geben Sie alle Werte an, die die Zufallsgröße \(X\) annehmen kann, und bestimmen Sie die Wahrscheinlichkeit \(P(X = 7)\).

    (3 BE)

  • Ein Glücksrad besteht aus zwei unterschiedlich großen Sektoren. Der größere Sektor ist mit der Zahl 1 und der kleinere mit der Zahl 3 beschriftet. Die Wahrscheinlichkeit dafür, beim einmaligen Drehen des Glücksrads die Zahl 1 zu erzielen, wird mit \(p\) bezeichnet. Das Glücksrad wird zweimal gedreht.

    Begründen Sie, dass die Wahrscheinlichkeit dafür, dass die Summe der beiden erzielten Zahlen 4 ist, durch den Term \(2p \cdot (1- p)\) angegeben wird.

    (1 BE)

  • Neben dem Fußballturnier werden für die Schülerinnen und Schüler auch ein Elfmeterschießen und ein Torwandschießen angeboten.

    Dafür konnten sich Kinder in zwei Listen eintragen. 45 % der Kinder haben sich sowohl für das Torwandschießen als auch für das Elfmeterschießen eingetragen, 15 % haben sich nur für das Elfmeterschießen eingetragen. 90 % der Kinder, die sich für das Torwandschießen eingetragen haben, haben sich auch für das Elfmeterschießen eingetragen. Aus den Kindern wird eines zufällig ausgewählt. Betrachtet werden die folgenden Ereignisse:

    \(T\): „Das Kind hat sich für das Torwandschießen eingetragen."

    \(E\): „das Kind hat sich für das Elfmeterschießen eingetragen."

    Untersuchen Sie die Ereignisse \(T\) und \(E\) auf stochastiche Unabhängigkeit.

    (4 BE)

  • Ein Süßwarenunternehmen stellt verschiedene Sorten Fruchtgummis her.

    Luisa nimmt an einer Betriebsbesichtigung des Unternehmens teil. Zu Beginn der Führung bekommt sie ein Tütchen mit zehn Gummibärchen, von denen fünf weiß. zwei rot und drei grün sind. Luisa öffnet das Tütchen und nimmt, ohne hinzusehen, drei Gummibärchen heraus. Berechnen Sie die Wahrscheinlichkeit dafür, dass die drei Gummibärchen die gleiche Farbe haben.

    (3 BE)

  • Um sicherzustellen, dass jeweils genau 50 Gummibärchen in eine Tüte gelangen, fallen diese einzeln nacheinander aus einer Öffnung des Behälters in den Verpackungsautomaten. Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit mit dem folgenden Term berechnet werden kann:

    \[\sum \limits_{k\,=\,0}^{3}(0{,}75^{k} \cdot 0{,}25)\]

    (2 BE)

  • Das Süßwarenunternehmen produziert auch zuckerreduzierte und vegane Fruchtgummis und bringt diese in entsprechend gekennzeichneten Tüten in den Handel.

    Der Anteil der nicht als vegan gekennzeichneten Tüten ist dreimal so groß wie der Anteil der Tüten, die als vegan gekennzeichnet sind. 42 % der Tüten, die als vegan gekennzeichnet sind, sind zusätzlich auch als zuckerreduziert gekennzeichnet. Insgesamt sind 63 % der Tüten weder als vegan noch als zuckerreduziert gekennzeichnet.

    Betrachtet werden folgende Ereignisse:

    \(V\): „Eine zufällig ausgewählte Tüte ist als vegan gekennzeichnet."

    \(R\): „Eine zufällig ausgewählte Tüte ist als zuckerreduziert gekennzeichnet."

    Bestimmen Sie die Wahrscheinlichkeit des Ereignisses \(\overline{R}\).

    (3 BE)

Seite 2 von 3