Verhalten im Unendlichen

  • Um die zeitliche Entwicklung des Flächeninhalts eines Algenteppichs am Nordufer des Sees zu beschreiben, wird im Term \(A(x)\) die im Exponenten zur Basis e enthaltene Zahl -0,2 durch eine kleinere Zahl ersetzt.

    Vergleichen Sie den Algenteppich am Nordufer mit dem am Südufer

    ● hinsichtlich der durch \(A(0)\) und \(\lim \limits_{x\,\to\,+\infty} A(x)\) beschriebenen Eigenschaften (vgl. Aufgabe 2a).

    ● hinsichtlich der momentanen Änderungsrate des Flächeninhalts zu Beobachtungsbeginn (vgl. Aufgabe 2c).

    Skizzieren Sie - ausgehend von diesem Vergleich - in der Abbildung 2 den Graphen einer Funktion, die eine mögliche zeitliche Entwicklung des Flächeninhalts des Algenteppichs am Nordufer beschreibt.

    (5 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto \ln{\left( \dfrac{1}{x^{2} + 1} \right)}\). Begründen Sie, dass die Wertemenge von \(h\) das Intervall \(]-\infty;0]\) ist.

    (3 BE)

  • Gegeben ist die in \(\mathbb R \backslash \{-2;2\}\) definierte Funktion \(f \colon x \mapsto \dfrac{6x}{x^{2} - 4}\). Der Graph von \(f\) wird mit \(G_{f}\) bezeichnet und ist symmetrisch bezüglich des Koordinatenursprungs.

    Geben Sie die Gleichungen aller senkrechter Asymptoten von \(G_{f}\) an. Begründen Sie, dass \(G_{f}\) die \(x\)-Achse als waagrechte Asymptote besitzt.

    (3 BE)

  • Skizzieren Sie in die Abbildung den Graphen von \(F\). Berücksichtigen Sie dabei insbesondere, dass \(F(1) \approx 3{,}5\) und \(\lim \limits_{x\,\to\,+\infty} F(x) = 2\) gilt.

    (3 BE)

  • Betrachtet wird die in \(\mathbb R\) definierte Funktion \(g \colon x \mapsto \dfrac{e^{x}}{e^{x} + 1}\). Ihr Graph wird mit \(G_{g}\) bezeichnet.

    Zeigen Sie, dass \(g\) streng monoton zunehmen ist und die Wertemenge \(]0;1[\) besitzt.

    (zur Kontrolle: \(g'(x) = \dfrac{e^{x}}{(e^{x} + 1)^{2}}\))

    (5 BE)

  • Geben Sie einen Term einer gebrochen-rationalen Funktion an, die die folgenden Eigenschaften hat: Die Funktion \(h\) ist in \(\mathbb R\) definiert; ihr Graph besitzt die Gerade mit der Gleichung \(y = 3\) als waagrechte Asymptote und schneidet die \(y\)-Achse im Punkt \((0|4)\).

    (3 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \dfrac{2x^2}{x^2 - 9}\) mit maximaler Definitionsmenge \(D_g\).

    Geben Sie \(D_g\) sowie eine Gleichung der waagrechten Asymptote des Graphen von \(g\) an.

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = x \cdot e^{-\frac{1}{2}x^2+\frac{1}{2}}\). Die Abbildung 1 zeigt den Graphen von \(f\) ohne das zugrunde liegende Koordinatensystem.

    Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2022Abb. 1

    Zeigen Sie anhand des Funktionsterms von \(f\), dass der Graph von \(f\) symmetrisch bezüglich des Koordinatenursprungs ist. Begründen Sie, dass \(f\) genau eine Nullstelle hat, und geben Sie den Grenzwert von \(f\) für \(x \to +\infty\) an.

    (4 BE) 

  • Gegeben ist die in \(\mathbb R \backslash \{0\}\) definierte Funktion \(g \colon x \mapsto \dfrac{1}{x^2} - 1\).

    Geben Sie eine Gleichung der waagrechten Asymptote des Graphen von \(g\) sowie die Wertemenge von \(g\) an.

    (2 BE) 

  • Der Graph einer Stammfunktion von \(g\) verläuft durch \(P\). Skizzieren Sie diesen Graphen in Abbildung 2.

    (3 BE) 

  • Der Graph einer Stammfunktion von \(g\) verläuft durch \(P\). Skizzieren Sie diesen Graphen in Abbildung 2.

    (3 BE) 

  • In der Vorderseite der Dachgaube befindet sich ein Fenster. Dem Fenster entspricht im Modell das Flächenstück, das der Graph der Funktion \(g\) mit \(g(x) = ax^4 + b\) und geeigneten Werten \(a,b \in \mathbb R\) mit der \(x\)-Achse einschließt (vgl. Abbildung 3).

    Begründen Sie, dass a negativ und b positiv ist.

    (2 BE) 

  • Betrachtet wird die Schar der in \(\mathbb R\) definierten Funktionen \(h_k\) mit \(h_k(x) = (x - 3)^k + 1\) und \(k \in \{1;2;3;\dots\}\).

    Geben Sie in Abhängigkeit von \(k\) das Verhalten von \(h_k\) für \(x \to -\infty\) an und begründen Sie Ihre Angabe.

    (3 BE) 

  • Begründen Sie mithilfe des Funktionsterms von \(f\), dass \(\lim \limits_{x \, \to \, -\infty} f(x) = 0\) und \(\lim \limits_{x \, \to \, +\infty} f(x) = 2\) gilt.

    (2 BE)

  • Geben Sie das Verhalten von \(g\) für \(x \to -\infty\) und \(x \to +\infty\) an.

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto 2x \cdot e^{-0{,}5x^2}\). Abbildung 2 zeigt den Graphen \(G_f\) von \(f\).

    Abbildung 2Abb. 2

    Weisen Sie nach, dass \(G_f\) punktsymmetrisch bezüglich des Koordinatenursprungs ist, und machen Sie anhand des Funktionsterms von \(f\) plausibel, dass \(\lim \limits_{x \, \to \, + \infty} f(x) = 0\) gilt.

    (2 BE)

  • Im Folgenden wird die Schar der in \(\mathbb R\) definierten Funktionen \(g_c \colon x \mapsto f(x) + c\) mit \(c \in \mathbb R\) betrachtet.

    Geben Sie in Abhängigkeit von \(c\) ohne weitere Rechnung die Koordinaten des Hochpunkts des Graphen von \(g_c\) sowie das Verhalten von \(g_c\) für \(x \to + \infty\) an.

    (2 BE)

  • Welche künftige Entwicklung der Bevölkerungszahl ist auf der Grundlage des Modells zu erwarten? Begründen Sie Ihre Antwort.

    (2 BE)

  • Im betrachteten Zeitraum gibt es ein jahr, in dem die Geburtenziffer am stärksten abnimmt. Geben Sie mithilfe von Abbildung 2 einen Näherungswert für dieses Jahr an. Beschreiben Sie, wie man auf der Grundlage des Modells rechnerisch nachweisen könnte, dass die Abnahme der Geburtenziffer von diesem Jahr an kontinuierlich schwächer wird.

    (3 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(g \colon x \mapsto e^{-x}\) und \(h \colon x \mapsto x^3\).

    Veranschaulichen Sie durch eine Skizze, dass die Graphen von \(g\) und \(h\) genau einen Schnittpunkt haben.

    (2 BE)