Pfadregeln

  • Das abgebildete Baumdiagramm stellt ein zweistufiges Zufallsexperiment mit den Ereignissen \(A\) und \(B\) sowie deren Gegenereignissen \(\overline{A}\) und \(\overline{B}\) dar.

    Abbildung Aufgabe 2a Stochastik 1 Mathematik Abitur Bayern 2018 A

    Bestimmen Sie den Wert von \(p\) so, dass das Ereignis \(B\) bei diesem Zufallsexperiment mit der Wahrscheinlichkeit \(0,3\) eintritt.

    (2 BE)

  • Ermitteln Sie den größtmöglichen Wert, den die Wahrscheinlichkeit von \(B\) annehmen kann.

    (3 BE)

  • Die Größen der Sektoren werden geändert. Dabei werden der grüne und der rote Sektor verkleinert, wobei der Mittelpunktswinkel des roten Sektors wieder doppelt so groß wie der des grünen Sektors ist. Die Abbildung zeigt einen Teil eines Baumdiagramms, das für das geänderte Glücksrad die beiden ersten Drehungen beschreibt. Ergänzend ist für einen Pfad die zugehörige Wahrscheinlichkeit angegeben.

    Abbildung Aufgabe 2c Stochastik 2 Mathematik Abitur Bayern 2018

    Bestimmen Sie die Größe des zum grünen Sektor gehörenden Mittelpunktswinkels.

    (5 BE)

  • Das Glücksrad wird zweimal gedreht. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Summe der erzielten Zahlen mindestens 11 beträgt.

    (3 BE)

  • Das Glücksrad wird zweimal gedreht. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Summe der erzielten Zahlen mindestens 11 beträgt.

    (3 BE)

  • Das Baumdiagramm in Abbildung 2 gehört zu einem Zufallsexperiment mit den stochastisch unabhängigen Ereignissen \(A\) und \(B\). Bestimmen Sie die Wahrscheinlichkeit des Ereignisses \(B\).

    Abbildung 2 Aufgabe 3 Stochastik 2 Mathematik Abitur Bayern 2019 AAbb. 2

     

    (3 BE)

  • Gegeben sind grüne und rote Würfel, deren Seitenflächen unterschiedlich beschriftet sind und beim Werfen mit jeweils gleicher Wahrscheinlichkeit auftreten. Jeder grüne Würfel trägt auf fünf Seitenflächen die Augenzahl 1 und auf einer die Augenzahl 6. Jeder rote Würfel trägt auf jeweils zwei Seitenflächen die Augenzahlen 1, 3 bzw. 6.

    In einer Urne befinden sich drei grüne Würfel und zwei rote Würfel. Der Urne werden mit einem Griff zwei Würfel zufällig entnommen. Geben Sie einen Term an, mit dem man die Wahrscheinlichkeit dafür bestimmen kann, dass ein roter Würfel und ein grüner Würfel entnommen werden.

    (2 BE)

  • Ein grüner Würfel und ein roter Würfel werden gleichzeitig geworfen. Die Zufallsgröße \(X\) beschreibt die Summe der beiden geworfenen Augenzahlen. Geben Sie alle Werte an, die die Zufallsgröße \(X\) annehmen kann, und bestimmen Sie die Wahrscheinlichkeit \(P(X = 7)\).

    (3 BE)

  • Ein Glücksrad besteht aus zwei unterschiedlich großen Sektoren. Der größere Sektor ist mit der Zahl 1 und der kleinere mit der Zahl 3 beschriftet. Die Wahrscheinlichkeit dafür, beim einmaligen Drehen des Glücksrads die Zahl 1 zu erzielen, wird mit \(p\) bezeichnet. Das Glücksrad wird zweimal gedreht.

    Begründen Sie, dass die Wahrscheinlichkeit dafür, dass die Summe der beiden erzielten Zahlen 4 ist, durch den Term \(2p \cdot (1- p)\) angegeben wird.

    (1 BE)

  • Neben dem Fußballturnier werden für die Schülerinnen und Schüler auch ein Elfmeterschießen und ein Torwandschießen angeboten.

    Dafür konnten sich Kinder in zwei Listen eintragen. 45 % der Kinder haben sich sowohl für das Torwandschießen als auch für das Elfmeterschießen eingetragen, 15 % haben sich nur für das Elfmeterschießen eingetragen. 90 % der Kinder, die sich für das Torwandschießen eingetragen haben, haben sich auch für das Elfmeterschießen eingetragen. Aus den Kindern wird eines zufällig ausgewählt. Betrachtet werden die folgenden Ereignisse:

    \(T\): „Das Kind hat sich für das Torwandschießen eingetragen."

    \(E\): „das Kind hat sich für das Elfmeterschießen eingetragen."

    Untersuchen Sie die Ereignisse \(T\) und \(E\) auf stochastiche Unabhängigkeit.

    (4 BE)

  • Ein Süßwarenunternehmen stellt verschiedene Sorten Fruchtgummis her.

    Luisa nimmt an einer Betriebsbesichtigung des Unternehmens teil. Zu Beginn der Führung bekommt sie ein Tütchen mit zehn Gummibärchen, von denen fünf weiß. zwei rot und drei grün sind. Luisa öffnet das Tütchen und nimmt, ohne hinzusehen, drei Gummibärchen heraus. Berechnen Sie die Wahrscheinlichkeit dafür, dass die drei Gummibärchen die gleiche Farbe haben.

    (3 BE)

  • Das Süßwarenunternehmen produziert auch zuckerreduzierte und vegane Fruchtgummis und bringt diese in entsprechend gekennzeichneten Tüten in den Handel.

    Der Anteil der nicht als vegan gekennzeichneten Tüten ist dreimal so groß wie der Anteil der Tüten, die als vegan gekennzeichnet sind. 42 % der Tüten, die als vegan gekennzeichnet sind, sind zusätzlich auch als zuckerreduziert gekennzeichnet. Insgesamt sind 63 % der Tüten weder als vegan noch als zuckerreduziert gekennzeichnet.

    Betrachtet werden folgende Ereignisse:

    \(V\): „Eine zufällig ausgewählte Tüte ist als vegan gekennzeichnet."

    \(R\): „Eine zufällig ausgewählte Tüte ist als zuckerreduziert gekennzeichnet."

    Bestimmen Sie die Wahrscheinlichkeit des Ereignisses \(\overline{R}\).

    (3 BE)

  • Die Abbildung zeigt das Netz eines Würfels, von dem nur drei Seiten beschriftet sind.

    Abbildung Stochastik 2 Prüfungsteil A Mathematik Abitur Bayern 2022

    Der Würfel wird so lange geworfen, bis die Zahl 1 zum ersten Mal erzielt wird. Berechnen Sie die Wahrscheinlichkeit dafür, dass genau viermal gewürfelt wird.

    (2 BE)

  • Um Geld für die beiden Aktionen einzunehmen, bietet die SMV auf dem Schulfest das Spiel „2022" an. Bei dem Spiel werden zwei Glücksräder mit drei bzw. vier gleich großen Sektoren verwendet, die wie in Abbildung 1 beschriftet sind. Für einen Einsatz von 3 € darf man jedes der beiden Glücksräder einmal drehen. Für jede Ziffer 2, die auf den erzielten Sektoren steht, werden 2 € ausbezahlt. Die Zufallsgröße \(Z\) beschreibt, wie oft die Ziffer 2 auf den erzielten Sektoren insgesamt vorkommt.

    Abbildung 1 Stochastik 2 Prüfungsteil B Mathematik Abitur Bayern 2022

    Die Tabelle zeigt die Wahrscheinlichkeitsverteilung von \(Z\). Bestimmen Sie die Wahrscheinlichkeiten \(p_1\) und \(p_2\).

    \(k\) \(0\) \(1\) \(2\) \(3\)
    \(P(Z = k)\) \(\dfrac{1}{3}\) \(p_1\) \(p_2\) \(\dfrac{1}{12}\)

    (zur Kontrolle: \(p_2 = \frac{1}{4}\))

    (3 BE)

  • Ermitteln Sie die Wahrscheinlichkeit dafür, dass an die ersten drei Personen drei unterschiedliche Beträge ausbezahlt werden, die in der Summe 12 € ergeben.

    (3 BE)

  • In einen leeren Behälter werden drei Kugeln gelegt. Dabei wird die Farbe jeder Kugel durch Werfen eines Würfels festgelegt, dessen Seiten mit den Zahlen 1 bis 6 durchnummeriert sind: Wird die „1" oder die „2" erzielt, wird eine gelbe Kugel gewählt, sonst eine schwarze.

    Weisen Sie rechnerisch nach, dass die Wahrscheinlichkeit dafür, dass sich nun mindestens zwei schwarze Kugeln im Behälter befinden, \(\large{\frac{20}{27}}\) beträgt.

    (2 BE) 

  • Aus dem Behälter werden zwei der drei Kugeln zufällig entnommen. Ermitteln Sie die Wahrscheinlichkeit dafür, dass beide entnommenen Kugeln schwarz sind.

    (3 BE) 

  • Ein Autozulieferer hat zwei Betriebsstandorte A und B. Die Zahl der Beschäftigten am Standort A ist viermal so groß wie am Standort B. 60 % aller Beschäftigten des Autozulieferers haben sich für den Kauf eines Jobtickets entschieden, mit dem die Firma die Nutzung des öffentlichen Personennahverkehrs für den Weg zur Arbeit fördert.

    Bestimmen Sie unter der Annahme, dass der Anteil der Beschäftigten mit einem Jobticket an beiden Standorten gleich ist, die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter Beschäftigter des Autozulieferers am Standort B arbeitet und kein Jobticket besitzt.

    (2 BE) 

  • Bei jeder Aufführung wird der Vorhang 15-mal geschlossen; dafür ist ein automatischer Mechanismus vorgesehen. Erfahrungsgemäß funktioniert der Mechanismus bei jedem Schließen des Vorhangs mit einer Wahrscheinlichkeit von 90 %. Nur dann, wenn der Mechanismus nicht funktioniert, wird der Vorhang von Hand zugezogen.

    Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(A\,\): "Bei einer Aufführung wird der Vorhang kein einziges Mal von Hand zugezogen."

    \(B\,\): "Bei einer Aufführung lässt sich der Vorhang zunächst viermal automatisch schließen, insgesamt wird der Vorhang jedoch genau zweimal von Hand zugezogen."

    (5 BE)

  • Die Zufallsgröße \(X\) beschreibt die Anzahl der von einem Kandidaten zu lösenden Aufgaben aus dem Fach Mathematik. Der Tabelle kann die Wahrscheinlichkeitsverteilung von \(X\) entnommen werden. Ermitteln Sie den fehlenden Wert der Wahrscheinlichkeitsverteilung sowie den Erwartungswert von \(X\,\).

     

    \(\displaystyle x\) \(\displaystyle 0\) \(\displaystyle 1\) \(\displaystyle 2\) \(\displaystyle 3\) \(\displaystyle 4\)
    \(\displaystyle P(X = x)\) \(\displaystyle \frac{1}{9}\) \(\displaystyle \frac{1}{3}\) \(\displaystyle \frac{13}{36}\)   \(\displaystyle \frac{1}{36}\)

     

    (3 BE)

Seite 2 von 3