Analysis 2

  • In der Pharmakologie wird das in positive \(x\)-Richtung unbegrenzte Flächenstück, das sich im I. Quadranten zwischen \(G_{f}\) und der \(x\)-Achse befindet, als AUC (area under the curve") bezeichnet. Nur dann, wenn diesem Flächenstück ein endlicher Flächeninhalt zugeordnet werden kann, kann die betrachtete Funktion \(f\) die zeitliche Entwicklung der Wirkstoffkonzentration auch für große Zeitwerte \(x\) realistisch beschreiben.

    Die \(x\)-Achse, \(G_{f}\) und die Gerade mit der Gleichung \(x = b\) mit \(b \in \mathbb R^{+}\) schließen im I. Quadranten ein Flächenstück mit dem Inhalt \(A(b)\) ein. Bestimmen Sie mithilfe der in Aufgabe d angegebenen Stammfunktion \(F\) einen Term für \(A(b)\) und beurteilen Sie unter Verwendung dieses Terms, ob die Funktion \(f\) auch für große Zeitwerte eine realistische Modellierung der zeitlichen Entwicklung der Wirkstoffkonzentration darstellt.

    (4 BE)

  • Das Medikament zeigt die gewünschte Wirkung erst ab einer bestimmten Wirkstoffkonzentration. Daher soll der Patient nach der ersten Tablette des Medikaments eine zweite identisch wirkende Tablette einnehmen, noch bevor die Konzentration des Wirkstoffs im Blut unter 0,75\(\frac{\sf{mg}}{\sf{l}}\) fällt. Nach der Einnahme der zweiten Tablette erhöht sich die Wirkstoffkonzentration um die durch diese Tablette verursachte Konzentration des Wirkstoffs im Blut.

    Ermitteln Sie durch Rechnung den spätesten Zeitpunkt, zu dem die zweite Tablette eingenommen werden soll.

    (4 BE)

  • Wird die zweite Tablette zweieinhalb Stunden nach der ersten Tablette eingenommen, so kann die Wirkstoffkonzentration für \(x \in [2{,}5;9]\) mit einem der folgenden Terme beschrieben werden. Wählen Sie den passenden Term aus und begründen Sie Ihre Wahl.

    (A) \(\quad f(x) + f(x + 2{,}5)\)

    (B) \(\quad f(x) + f(x - 2{,}5)\)

    (C) \(\quad f(x - 2{,}5) + f(2{,}5)\)

    (D) \(\quad f(x) - f(x - 2{,}5)\)

    (3 BE)

  • Verabreicht man das Medikament nicht in Form von Tabletten, sondern mittels einer Dauerinfusion, so wird der Wirkstoff langsam und kontinuierlich zugeführt. Die in \(\mathbb R\) definierte Funktion \(k \colon x \mapsto \dfrac{3 \cdot e^{2x}}{e^{2x} + 1} - 1{,}5\) beschreibt für \(x \geq 0\) modellhaft die zeitliche Entwicklung der Wirkstoffkonzentration während einer Dauerinfusion. Dabei ist \(x\) die seit Anlegen der Dauerinfusion vergangene Zeit in Stunden und \(k(x)\) die Wirkstoffkonzentration in \(\frac{\sf{mg}}{\sf{l}}\).

    Begründen Sie, dass der Graph von \(k\) streng monoton steigend ist.

    (zur Kontrolle: \(k'(x) = \dfrac{6e^{2x}}{\left( e^{2x} + 1 \right)^{2}}\))

    (4 BE)

  • Bei Dauerinfusionen dieses Medikaments muss die Wirkstoffkonzentration spätestens 60 Minuten nach Beginn der Infusion dauerhaft größer als 0,75\(\frac{\sf{mg}}{\sf{l}}\) sein und stets mindestens 25 % unter der gesundheitsschädlichen Grenze von 2\(\frac{\sf{mg}}{\sf{l}}\) liegen. Ermitteln Sie \(\lim \limits_{x\,\to\,+\infty} k(x)\) und beurteilen Sie beispielsweise unter Verwendung der bisherigen Ergebnisse, ob gemäß der Modellierung diese beiden Bedingungen erfüllt sind.

    (5 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \ln{(2 - x^{2})}\) mit maximaler Definitionsmenge \(D_{g}\).

    Skizzieren Sie die Parabel mit der Gleichung \(y = 2 - x^{2}\) in einem Koordinatensystem und geben Sie \(D_{g}\) an.

    (3 BE)

  • Ermitteln Sie den Term der Ableitungsfunktion \(g'\) von \(g\).

    (2 BE)

  • Die Abbildung 1 zeigt einen Teil des Graphen \(G_{h}\) einer in \(\mathbb R \backslash \{2\}\) definierten gebrochenrationalen Funktion \(h\). Die Funktion \(h\) hat bei \(x = 2\) eine Polstelle ohne Vorzeichenwechsel; zudem besitzt \(G_{h}\) die Gerade mit der Gleichung \(y = x - 7\) als schräge Asymptote.

    Abbildung 1 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2020

    Zeichnen Sie in die Abbildung 1 die Asymptoten von \(G_{h}\) ein und skizzieren Sie im Bereich \(x < 2\) einen möglichen Verlauf von \(G_{h}\).

    (3 BE)

  • Berechnen Sie unter Berücksichtigung des asymptotischen Verhaltens von \(G_{h}\) einen Näherungswert für \(\displaystyle \int_{10}^{20} h(x)dx\).

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(k \colon x \mapsto \dfrac{-x^{2} + 2x}{2x^{2} + 4}\). Ihr Graph wird mit \(G_{k}\) bezeichnet.

    Geben Sie die Nullstellen von \(k\) an und begründen Sie anhand des Funktionsterms, dass \(G_{k}\) die Gerade mit der Gleichung \(y = -0{,}5\) als waagrechte Asymptote besitzt.

    (3 BE)

  • Berechnen Sie die \(x\)-Koordinate des Schnittpunkts von \(G_{k}\) mit der waagrechten Asymptote.

    (2 BE)

  • Die Abbildung 2 zeigt den Graphen \(G_{f}\) einer in \([0{,}8; +\infty[\) definierten Funktion f.

    Abbildung 2 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2020

    Betrachtet wird zudem die in \([0{,}8; +\infty[\) definierte Integralfunktion \(\displaystyle J \colon x \mapsto \int_{2}^{x} f(t) dt\).

    Begründen Sie mithilfe von Abbildung 2, dass \(J(1) \approx -1\) gilt, und geben Sie einen Näherungswert für den Funktionswert \(J(4{,}5)\) an. Skizzieren Sie den Graphen von \(J\) in der Abbildung 2.

    (5 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto 1 + 7e^{-0{,}2x}\) mit Definitionsbereich \(\mathbb R_{0}^{+}\); die Abbildung 1 zeigt den Graphen \(G_{f}\).

    Begründen Sie, dass die Gerade mit der Gleichung \(y = 1\) waagrechte Asymptote von \(G_{f}\) ist.
    Zeigen Sie rechnerisch, dass \(f\) streng monoton abnehmend ist.

    Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

    (3 BE)

  • Für jeden Wert \(s > 0\) legen die Punkte \((0|1)\), \((s|1)\), \((s|f(s))\) und \((0|f(s))\) ein Rechteck mit dem Flächeninhalt \(R(s)\) fest.

    Zeichnen Sie dieses Rechteck für \(s = 5\) in die Abbildung 1 ein.
    Zeigen Sie, dass \(R(s)\) für einen bestimmten Wert von \(s\) maximal ist, und geben Sie diesen Wert von \(s\) an.

    Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

    (zur Kontrolle: \(R(s) = 7s \cdot e^{-0{,}2s}\))

    (7 BE)

  • Berechnen Sie den Inhalt des Flächenstücks, das von \(G_{f}\), der \(y\)-Achse sowie den Geraden mit den Gleichungen \(y = 1\) und \(x = 5\) begrenzt wird. Einen Teil dieses Flächenstücks nimmt das zu \(s = 5\) gehörige Rechteck ein. Bestimmen Sie den prozentualen Anteil des Flächeninhalts dieses Rechtecks am Inhalt des Flächenstücks.

    (7 BE)

  • Die in \(\mathbb R_{0}^{+}\) definierte Funktion \(A \colon x \mapsto \dfrac{8}{f(x)}\) beschreibt modellhaft die zeitliche Entwicklung des Flächeninhalts eines Algenteppichs am Südufer eines Sees. Dabei ist \(x\) die seit Beobachtungsbeginn vergangene Zeit in Tagen und \(A(x)\) der Flächeninhalt in Quadratmetern.

    Bestimmen Sie \(A(0)\) sowie \(\lim \limits_{x\,\to\,+\infty} A(x)\) und geben Sie jeweils die Bedeutung des Ergebnisses im Sachzusammenhang an. Begründen Sie mithilfe des Monotonieverhaltens der Funktion \(\mathbf{f}\), dass der Flächeninhalt des Algenteppichs im Laufe der Zeit ständig zunimmt.

    (5 BE)

  • Bestimmen Sie denjenigen Wert \(x_{0}\), für den \(A(x_{0}) = 4\) gilt, und interpretieren sie Ihr Ergebnis im Sachzusammenhang. 

    (4 BE)

  • Bestimmen Sie die momentane Änderungsrate des Flächeninhalts des Algenteppichs zu Beobachtungsbeginn.

    (4 BE)

  • Nur zu dem Zeitpunkt, der im Modell durch \(x_{0}\) (vgl. Aufgabe 2b) beschrieben wird, nimmt die momentane Änderungsrate des Flächeninhalts des Algenteppichs ihren größten Wert an. Geben Sie eine besondere Eigenschaft des Graphen von \(A\) im Punkt \((x_{0}|A(x_{0}))\) an, die sich daraus folgern lässt, und begründen Sie Ihre Angabe.

    (2 BE)

  • Skizzieren Sie den Graphen der Funktion \(A\) unter Verwendung der bisherigen Ergebnisse in der Abbildung 2.

    Abbildung 2 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

    (3 BE)