Analysis 2

  • Gegeben ist die in \(\mathbb R\) definierte  Funktion \(f\)  mit \(f(x) = e^x \cdot \left( 2x + x^2 \right)\).

    Bestimmen Sie die Nullstellen der Funktion \(f\).

    (2 BE)

  • Zeigen Sie, dass die in \(\mathbb R\) definierte Funktion \(F\) mit \(F(x) = x^2 \cdot e^x\) eine Stammfunktion von \(f\) ist. Geben eine Gleichung einer weiteren Stammfunktion \(G\) von \(f\) an, für die \(G(1) = 2e\) gilt.

    (3 BE)

  • Der Graph einer in \(\mathbb R\) definierten Funktion \(g \, \colon \mapsto g(x)\) besitzt für \(-5 \leq x \leq 5\) zwei Wendepunkte. Entscheiden Sie, welcher der Graphen I, II und III zur zweiten Ableitungsfunktion \(g''\) von \(g\) gehört. Begründen Sie Ihre Entscheidung.

    Graph I zu Teilaufgabe 3

    Graph II zu Teilaufgabe 3

    Graph III zu Teilaufgabe 3

    (2 BE)

  • In einem Koordinatensystem (vgl. Abbildung 1) werden alle Rechtecke betrachtet, die folgende Bedingungen erfüllen:

    • Zwei Seiten liegen auf den Koordinatenachsen.

    • Ein Eckpunkt liegt auf dem Graphen \(G_f\) der Funktion \(f \, \colon x \mapsto -\ln x\) mit \(0 < x < 1\).

    Abbildung 1 zeigt ein solches Rechteck.

    Abbildung 1 zu Teilaufgabe 4Abb. 1

    Unter den betrachteten Rechtecken gibt es eines mit größtem Flächeninhalt. Berechnen Sie die Seitenlängen dieses Rechtecks.

    (5 BE)

  • Die Abbildung zeigt den Graphen einer Funktion \(f\).

    Abbildung 2 zu Teilaufgabe 5aAbb. 2

    Beschreiben Sie für \(a \leq x \leq b\) den Verlauf des Graphen einer Stammfunktion von \(f\).

    (2 BE)

  • Skizzieren Sie in der Abbildung den Graphen einer Stammfunktion von \(f\) im gesamten dargestellten Bereich. 

    (3 BE)

  • Gegeben ist die Funktion \(f\) mit \(\displaystyle f(x) = \frac{20x}{x^2 - 25}\) und maximalem Definitionsbereich \(D_f\). Die Abbildung zeigt einen Teil des Graphen \(G_f\) von \(f\).

    Abbildung zu Teilaufgabe 1a

    Zeigen Sie, dass \(D_f = \mathbb R \, \backslash \, \{-5;5\}\) gilt und dass \(G_f\) symmetrisch bezüglich des Koordinatenursprungs ist. Geben Sie die Nullstelle von \(f\) sowie die Gleichungen der drei Asymptoten von \(G_f\) an.

    (5 BE)

  • Weisen Sie nach, dass die Steigung von \(G_f\) in jedem Punkt des Graphen negativ ist. Berechnen Sie die Größe des Winkels, unter dem \(G_f\) die \(x\)-Achse schneidet.

    (4 BE)

  • Skizzieren Sie in der Abbildung den darin fehlenden Teil von \(G_f\) unter Berücksichtigung der bisherigen Ergebnisse.

    (3 BE)

  • Die Funktion \(f^* \colon\mapsto f(x)\) mit Definitionsbereich \(]5;+\infty[\) unterscheidet sich von der Funktion \(f\) nur hinsichtlich des Definitionsbereichs. Begründen Sie, dass die Funktion \(f\) nicht umkehrbar ist, die Funktion \(f^*\) dagegen schon. Zeichnen Sie den Graphen der Umkehrfunktion von \(f^*\) in die Abbildung ein.

    (4 BE)

  • Der Graph von \(f\), die \(x\)-Achse sowie die Geraden mit den Gleichungen \(x = 10\) und \(x = s\) mit \(s > 10\) schließen ein Flächenstück mit dem Inhalt \(A(s)\) ein. Bestimmen Sie \(A(s)\).

    (Ergebnis: \(\displaystyle A(s) = 10 \cdot \ln{\frac{s^2 - 25}{75}}\))

    (5 BE)

  • Ein Motorboot fährt mit konstanter Motorleistung auf einem Fluss eine Strecke der Länge 10 km zuerst flussabwärts und unmittelbar anschließend flussaufwärts zum Ausgangspunkt zurück. Mit der Eigengeschwindigkeit des Motorboots wird der Betrag der Geschwindigkeit bezeichnet, mit der sich das Boot bei dieser Motorleistung auf einem stehenden Gewässer bewegen würde.

    Im Folgenden soll modellhaft davon ausgegangen werden, dass die Eigengeschwindigkeit des Boots während der Fahrt konstant ist und das Wasser im Fluss mit der konstanten Geschwindigkeit 5 \(\frac{\sf{km}}{\sf{h}}\) fließt. Die für das Wendemanöver erforderliche Zeit wird vernachlässigt.

    Die Gesamtfahrzeit in Stunden, die das Boot für Hinfahrt und Rückfahrt insgesamt benötigt, wird im Modell für \(x > 5\) durch den Term \(\displaystyle t(x) = \frac{10}{x + 5} + \frac{10}{x - 5}\) angegeben. Dabei ist \(x\) die Eigengeschwindigkeit des Boots in \(\frac{\sf{km}}{\sf{h}}\).

    Bestimmen Sie auf der Grundlage des Modells für eine Fahrt mit einer Eigengeschwindigkeit von 10 \(\frac{\sf{km}}{\sf{h}}\) und für eine Fahrt mit einer Eigengeschwindigkeit von 20 \(\frac{\sf{km}}{\sf{h}}\) jeweils die Gesamtfahrzeit in Minuten.

    (2 BE)

  • Begründen Sie, dass der erste Summand des Terms \(t(x)\) die für die Hinfahrt, der zweite Summand die für die Rückfahrt erforderliche Zeit in Stunden angibt.

    (3 BE)

  • Begründen Sie im Sachzusammenhang, dass \(t(x)\) für \(0 < x < 5\) nicht als Gesamtfahrzeit interpretiert werden kann.

    (2 BE)

  • Zeigen Sie, dass die Terme \(f(x)\) und \(t(x)\) äquivalent sind.

    (2 BE)

  • Beschreiben Sie, wie man mithilfe der Abbildung für eine Fahrt mit einer Gesamtfahrzeit zwischen zwei und vierzehn Stunden die zugehörige Eigengeschwindigkeit des Boots näherungsweise ermitteln kann. Berechnen Sie auf der Grundlage des Modells die Eigengeschwindigkeit des Boots für eine Fahrt mit einer Gesamtfahrzeit von vier Stunden.

    (5 BE)

  • Ermitteln Sie \(s\) so, dass das Flächenstück aus Aufgabe 1e den Inhalt 100 besitzt.

    (3 BE)

  • Bestimmen Sie das Verhalten von \(A(s)\) für \(s \to +\infty\).

    (2 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \ln(2x + 3)\) mit maximaler Definitionsmenge \(D\) und Wertemenge \(W\). Der Graph von \(g\) wird mit \(G_{g}\) bezeichnet.

    Geben Sie \(D\) und \(W\) an.

    (2 BE)

  • Ermitteln Sie die Gleichung der Tangente an \(G_{g}\) im Schnittpunkt von \(G_{g}\) mit der \(x\)-Achse.

    (4 BE)