Analysis 2

  • Geben Sie jeweils den Term einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

    Die Funktion \(g\) hat die maximale Definitionsmenge \(]-\infty;5[\). 

    (2 BE)

  • Die Funktion \(k\) hat in \(x = 2\) eine Nullstelle und in \(x = -3\) eine Polstelle ohne Vorzeichenwechsel. Der Graph von \(k\) hat die Gerade mit der Gleichung \(y = 1\) als Asymptote. 

    (3 BE)

  • Gegeben ist die Schar der in \(\mathbb R\) definierten Funktionen \(f_{a} \colon x \mapsto xe^{ax}\) mit \(a \in \mathbb R \, \backslash \,\{0\}\). Ermitteln Sie, für welchen Wert von \(a\) die erste Ableitung von \(f_{a}\) an der Stelle \(x = 2\) den Wert 0 besitzt.

    (4 BE)

  • Der Graph \(G_{f}\) einer in \(\mathbb R\) definierten Funktion \(f \colon x \mapsto ax^4 + bx^3\) mit \(a,b \in \mathbb R\) besitzt im Punkt \(O\,(0|0)\) einen Wendepunkt mit waagrechter Tangente.

    \(W\,(1|-1)\) ist ein weiterer Wendepunkt von \(G_{f}\). Bestimmen Sie mithilfe dieser Informationen die Werte von \(a\) und \(b\).

    (Ergebnis: \(a = 1, b = -2\))

    (4 BE)

  • Bestimmen Sie Lage und Art des Extrempunkts von \(G_{f}\).

    (4 BE)

  • Die Gerade \(g\) schneidet \(G_{f}\) in den Punkten \(W\) und \((2|0)\).

    Zeichnen Sie unter Berücksichtigung der bisherigen Ergebnisse \(G_{f}\) sowie die Gerade \(g\) in ein Koordinatensystem ein. Geben Sie die Gleichung der Geraden \(g\) an.

    (4 BE)

  • \(G_{f}\) und die \(x\)-Achse schließen im IV. Quadranten ein Flächenstück ein, das durch die Gerade \(g\) in zwei Teilflächen zerlegt wird. Berechnen Sie das Verhältnis der Flächeninhalte dieser beiden Teilflächen. 

    (6 BE)

  • Gegeben ist die Schar der in \(\mathbb R\) definierten Funktionen \(f_{n} \colon x \mapsto x^4 - 2x^n\) mit \(n \in \mathbb N\) sowie die in \(\mathbb R\) definierte Funktion \(f_{0} \colon x \mapsto x^4 - 2\).

    Die Abbildungen 1 bis 4 zeigen die Graphen der Funktionen \(f_{0}\), \(f_{1}\), \(f_{2}\) bzw. \(f_{4}\). Ordnen Sie jeder dieser Funktionen den passenden Graphen zu und begründen Sie drei Ihrer Zuordnungen durch Aussagen zur Symmetrie, zu den Schnittpunkten mit den Koordinatenachsen oder dem Verhalten an den Grenzen des Definitionsbereichs des jeweiligen Graphen.

    Abbildung 1 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Abbildung 2 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Abbildung 3 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 3

    Abbildung 4 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 4

     

    (4 BE)

  • Betrachtet werden nun die Funktionen \(f_{n}\) mit \(n > 4\). Geben Sie in Abhängigkeit von \(n\) das Verhalten dieser Funktionen für \(x \to +\infty\) und für \(x \to -\infty\) an.

    (3 BE)

  • Zu Beginn eines Ausatemvorgangs befinden sich 3,5 Liter Luft in der Lunge der Testperson. Skizzieren Sie auf der Grundlage des Modells unter Berücksichtigung des Ergebnisses aus Aufgabe 3c in einem Koordinatensystem für \(0 \leq t \leq 8\) den Graphen einer Funktion, die den zeitlichen Verlauf des Luftvolumens in der Lunge der Testperson beschreibt.

    (3 BE)

  • In der Lungenfunktionsdiagnostig spielt der Begriff der Atemstromstärke eine wichtige Rolle.

    Im Folgenden wird die Atemstromstärke als die momentane Änderungsrate des Luftvolumens in der Lunge betrachtet, d.h. insbesondere, dass der Wert der Atemstromstärke beim Einatmen positiv ist. Für eine ruhende Testperson mit normalem Atemrhythmus wird die Atemstromstärke in Abhängigkeit von der Zeit modellhaft durch die Funktion \(\displaystyle g \colon x \mapsto -\frac{\pi}{8} \sin \left( \frac{\pi}{2}t \right)\) mit Definitionsmenge \(\mathbb R_{0}^{+}\) beschrieben. Dabei ist \(t\) die seit Beobachtungsbeginn vergangene Zeit in Sekunden und \(g(t)\) die Atemstromstärke in Litern pro Sekunde. Abbildung 5 zeigt den durch die Funktion \(g\) beschriebenen zeitlichen Verlauf der Atemstromstärke.

    Abbildung 5 zu Teilaufgabe 3a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015

    Abb. 5

    Berechnen Sie \(g(1{,}5)\) und interpretieren Sie das Vorzeichen dieses Werts im Sachzusammenhang.

    (2 BE)

  • Beim Atmen ändert sich das Luftvolumen in der Lunge. Geben Sie auf der Grundlage des Modells einen Zeitpunkt an, zu dem das Luftvolumen in der Lunge der Testperson minimal ist, und machen Sie Ihre Antwort mithilfe von Abbildung 5 plausibel.

    (2 BE)

  • Berechnen Sie \(\displaystyle \int_{2}^{4} g(t)\,dt\) und deuten Sie den Wert des Integrals im Sachzusammenhang.

    (Teilergebnis: Wert des Integrals: 0,5)

    (4 BE)

  • Die Testperson benötigt für einen vollständigen Atemzyklus 4 Sekunden. Die Anzahl der Atemzyklen pro Minute wird als Atemfrequenz bezeichnet.

    Geben Sie zunächst die Atemfrequenz der Testperson an.

    Die Atemstromstärke eines jüngeren Menschen, dessen Atemfrequenz um 20 % höher ist als die der bisher betrachteten Testperson, soll durch eine Sinusfunktion der Form \(h \colon t \mapsto a \cdot \sin(b \cdot t)\) mit \(t \geq 0\) und \(b > 0\) beschrieben werden. Ermitteln Sie den Wert von \(b\).

    (4 BE)

  • Abbildung 2 zeigt den Graphen \(G_{k}\) einer in \(\mathbb R\) definierten Funktion \(k\). Skizzieren Sie in Abbildung 2 den Graphen der zugehörigen Ableitungsfunktion \(k'\). Berücksichtigen Sie dabei insbesondere einen Näherungswert für die Steigung des Graphen \(G_{k}\) an dessen Wendepunkt \((0|-3)\) sowie die Nullstelle von \(k'\).

    Abbildung 2 zu Teilaufgabe 4 - Analysis 2 - Prüfungsteil A - Mathematik Abitur Bayern 2016

    Abb. 2

    (4 BE)

  • Die Funktion \(F\) ist die in \(\mathbb R\) definierte Stammfunktion von \(f\) mit \(F(3) = 0\).

    Geben Sie mithilfe der Abbildung einen Näherungswert für die Ableitung von \(F\) an der Stelle \(x = 2\) an.

    (1 BE)

  • Der Graph der Funktion \(h\) ist streng monoton fallend und rechtsgekrümmt.

    (2 BE)

  • Ermitteln Sie die \(x\)-Koordinate des Punkts, in dem der Graph von \(f\) eine waagrechte Tangente hat.

    (4 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{\ln{x}}{x^{2}}\) mit maximalem Definitionsbereich \(D\).

    Geben Sie \(D\) sowie die Nullstelle von \(f\) an und bestimmen Sie \(\lim \limits_{x \, \to \, 0} f(x)\).

    (3 BE)

  • Zeigen Sie, dass \(\displaystyle F(b) = \int_{3}^{b} f(x) \, dx\) mit \(b \in \mathbb R\) gilt.

    (2 BE)