Binomialverteilung

  • Die Sektoren des abgebildeten Glücksrads sind gleich groß und mit den Zahlen von 0 bis 9 durchnummeriert.

    Das Glücksrad wird zwanzigmal gedreht. Bestimmen Sie die Wahrscheinlichkeit der Ereignisse \(A\) und \(B\).

    \(A\): „Es wird genau siebenmal eine ungerade Zahl erzielt."

    \(B\): „Es wird mehr als siebenmal und höchstens zwölfmal eine ungerade Zahl erzielt."

    Glücksrad Stochastik 2 Prüfungsteil B Mathematik Abitur Bayern 2023

    (3 BE) 

  • Mit dem Glücksrad wird ein Spiel durchgeführt. Jeder Spieler darf das Glücksrad beliebig oft drehen. Beendet er das Spiel selbst, bevor er eine „0" erzielt, so wird ihm die Summe der erzielten Zahlen in Euro ausgezahlt. Erzielt er eine „0", so ist das Spiel dadurch beendet und es erfolgt keine Auszahlung.

    Ein erster Spieler entscheidet sich vor dem Spiel dafür, das Glücksrad, sofern er keine „0" erzielt, viermal zu drehen und danach das Spiel zu beenden. Bestimmen Sie die Wahrscheinlichkeit dafür, dass er eine Auszahlung erhält.

    (2 BE) 

  • Folgende Tabelle gibt die Verteilung der Blutgruppen und der Rhesusfaktoren innerhalb der Bevölkerung Deutschlands wieder:

    Tabelle: Verteilung der Blutgruppen und Rhesusfaktoren

    In einem Krankenhaus spenden an einem Vormittag 25 Personen Blut. Im Folgenden soll angenommen werden, dass diese 25 Personen eine zufällige Auswahl aus der Bevölkerung darstellen. 

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass genau zehn der Spender die Blutgruppe \(A\) haben.

    (3 BE)

  • Folgende Tabelle gibt für die verschiedenen Empfänger von Spenderblut an, welches Spenderblut für sie jeweils geeignet ist:

    Tabelle: Eignung von Spenderblut für verschiedene Empfänger

    Für einen Patienten mit der Blutgruppe \(B\) und dem Rhesusfaktor \(Rh-\) wird Spenderblut benötigt. Bestimmen Sie, wie viel zufällig ausgewählte Personen mindestens Blut spenden müssten, damit man mit einer Wahrscheinlichkeit von mehr als 95 % mindestens eine für diesen Patienten geeignete Blutspende erhält.

    (5 BE)

  • Bei jeder Aufführung wird der Vorhang 15-mal geschlossen; dafür ist ein automatischer Mechanismus vorgesehen. Erfahrungsgemäß funktioniert der Mechanismus bei jedem Schließen des Vorhangs mit einer Wahrscheinlichkeit von 90 %. Nur dann, wenn der Mechanismus nicht funktioniert, wird der Vorhang von Hand zugezogen.

    Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(A\,\): "Bei einer Aufführung wird der Vorhang kein einziges Mal von Hand zugezogen."

    \(B\,\): "Bei einer Aufführung lässt sich der Vorhang zunächst viermal automatisch schließen, insgesamt wird der Vorhang jedoch genau zweimal von Hand zugezogen."

    (5 BE)

  • Die Zufallsgröße \(X\) beschreibt, wie oft der Mechanismus beim Schließen des Vorhangs im Verlauf einer Aufführung nicht funktioniert. Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert von \(X\) um mehr als eine Standardabweichung vom Erwartungswert der Zufallsgröße abweicht.

    (5 BE)

  • Bestimmen Sie, wie viele Kandidaten an der Quizshow mindestens teilnehmen müssten, damit mit einer Wahrscheinlichkeit von mehr als 90 % wenigstens ein Kandidat darunter ist, der keine Aufgabe aus dem Fachgebiet Mathematik lösen muss.

    (4 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass genau einer der zehn Kandidaten keine Aufgabe aus dem Fachgebiet Mathematik lösen muss.

    (2 BE)

  • Aus dem Bewerberfeld werden zwanzig weibliche und zehn männliche Personen zu einem Casting eingeladen, das in zwei Gruppen durchgeführt wird. Fünfzehn der Eingeladenen werden für die erste Gruppe zufällig ausgewählt. Die Wahrscheinlichkeit dafür, dass für die erste Gruppe zehn weibliche und fünf männliche Personen ausgewählt werden, wird mit \(p\) bezeichnet.

    Begründen Sie im Sachzusammenhang, dass \(p\) nicht durch den Term

    \[\binom{15}{5} \cdot \left( \frac{1}{3} \right)^5 \cdot \left( \frac{2}{3} \right)^{10}\]

    beschrieben wird.

    (2 BE)

  • Ermitteln Sie die Wahrscheinlichkeit dafür, dass mehr als die Hälfte der Spender die Blutgruppe \(0\) und den Rhesusfaktor \(Rh+\) besitzt.

    (3 BE)

  • Der Kandidat der Partei A spricht an einem Tag während seines Wahlkampfs 48 zufällig ausgewählte Wahlberechtigte an. Bestimmen Sie die Wahrscheinlichkeit dafür, dass sich darunter genau sechs Jungwähler befinden. 

    (3 BE)

  • Zehn Besucher des Gemeindefests drehen nacheinander jeweils einmal das Glücksrad. Geben Sie zu jedem der folgenden Ereignisse einen Term an, mit dem sich die Wahrscheinlichkeit des Ereignisses berechnen lässt.

    \(A\): "Nur die ersten fünf Preise entfallen auf die Kategorie 4."

    \(B\): "Genau die Hälfte der Preise entfällt auf die Kategorie 4."

    \(C\): "Die Preise verteilen sich jeweils zur Hälfte auf die Kategorien 1 und 4."

    (5 BE)

  • Die Bürgerinitiative veranstaltet am viel besuchten Badesee der Gemeinde eine Unterschriftenaktion gegen die geplante Windkraftanlage.

    Berechnen Sie, wie hoch der Anteil \(p\) der Gegner der Windkraftanlage unter den Badegästen mindestens sein muss, damit sich unter zehn zufällig ausgewählten Badegästen mit einer Wahrscheinlichkeit von mindestens 99 % wenigstens ein Gegner der Windkraftanlage befindet. 

    (5 BE)

  • Auf der Strecke München-Tokio bietet eine Fluggesellschaft ihren Passagieren verschiedene Menüs an, darunter ein vegetarisches. Aus Erfahrung weiß man, dass sich im Mittel 10 % der Passagiere für das vegetarische Menü entscheiden. Im Folgenden soll davon ausgegangen werden, dass die Passagiere ihre jeweilige Menüauswahl unabhängig voneinander treffen.

    Auf einem Flug nach Tokio sind 200 Passagiere an Bord. Bestimmen Sie die Wahrscheinlichkeit dafür, dass sich mindestens 20 und höchstens 25 Passagiere für das vegetarische Menü entscheiden.

    (4 BE)

  • Auf dem Rückflug nach München ist die Maschine mit 240 Passagieren besetzt.

    Berechnen Sie die Wahrscheinlichkeit dafür, dass sich auf dem Rückflug genau 20 Passagiere für das vegetarische Menü entscheiden.

    (3 BE)

Seite 4 von 4