Tangentengleichung

  • Gegeben ist die Funktion \(\displaystyle b\,\colon x \mapsto \frac{\ln x}{x - 2}\) mit maximalem Definitionsbereich \(D\).

    Geben Sie \(D\) an und bestimmen Sie die Gleichung der Tangente an den Graphen von \(b\) im Punkt \(\big(1|b(1)\big)\).

    (6 BE)

  • Bestimmen Sie die Gleichung der Tangente an \(G_f\) im Achsenschnittpunkt \(S\).

    (Ergebnis: \(y = 0{,}18x + 0{,}2\))

    (2 BE)

  • Bestimmen Sie die Gleichung der Tangente an den Graphen von \(h\) im Punkt \((1|h(1))\,\).

    (4 BE)

  • Weisen Sie nach, dass die Verbindungsstrecke \([PQ_E]\) und die Tangente an \(G_f\) im Punkt \(Q_E\) senkrecht zueinander sind.

    (5 BE)

  • Ermitteln Sie die Gleichung der Tangente an den Graphen von \(g\) im Punkt \(P\,(0|3)\).

    (4 BE)

  • Bestimmen Sie die Gleichung der Tangente an \(G_f\) im Punkt \((0|6)\). Skizzieren Sie \(G_f\) unter Verwendung der bisherigen Ergebnisse in ein geeignet anzulegendes Koordinatensystem.

    (6 BE)

Seite 2 von 2