NEU Abiturskript G9 PDF
Spezielle Eigenschaften von Funktionen: Grenzwerte bestimmen, beschreiben und graphisch interpretieren, Verschieben von Funktionsgraphen, Stauchen von Funktionsgraphen
Stetigkeit von Funktionen: Stetigkeit anhand eines Graphen beurteilen, Stetigkeit als Bedingung anwenden, Stetigkeit nachweisen
Gebrochenrationale Funktion: Maximale Definitionsmenge angeben, Funktionsgraph zuordnen und begründen, Funktionsterm zuordnen
Kurvendiskussion gebrochenrationale Funktion: Nullstelle, Polstellen, Verhalten an den Definitionslücken, schräge / waagrechte Asymptoten, Funktionsgraph skizzieren
Gebrochenrationale Funktion: Anhand eines zu bestimmenden Grenzwerts auf die besondere Eigenschaft der Funktion schließen
Bedingte Wahrscheinlichkeit, stochastische (Un)Abhängigkeit: Bedingte Wahrscheinlichkeit erkennen, verwenden und berechnen, Vierfeldertafel anwenden (optional), Zwei Ereignisse auf stochastische Unabhängigkeit untersuchen
Gegeben ist die Funktion \(\displaystyle b\,\colon x \mapsto \frac{\ln x}{x - 2}\) mit maximalem Definitionsbereich \(D\).
Geben Sie \(D\) an und bestimmen Sie die Gleichung der Tangente an den Graphen von \(b\) im Punkt \(\big(1|b(1)\big)\).
(6 BE)
Bestimmen Sie die Gleichung der Tangente an \(G_f\) im Achsenschnittpunkt \(S\).
(Ergebnis: \(y = 0{,}18x + 0{,}2\))
(2 BE)
Bestimmen Sie die Gleichung der Tangente an den Graphen von \(h\) im Punkt \((1|h(1))\,\).
(4 BE)
Weisen Sie nach, dass die Verbindungsstrecke \([PQ_E]\) und die Tangente an \(G_f\) im Punkt \(Q_E\) senkrecht zueinander sind.
(5 BE)
Ermitteln Sie die Gleichung der Tangente an den Graphen von \(g\) im Punkt \(P\,(0|3)\).
Bestimmen Sie die Gleichung der Tangente an \(G_f\) im Punkt \((0|6)\). Skizzieren Sie \(G_f\) unter Verwendung der bisherigen Ergebnisse in ein geeignet anzulegendes Koordinatensystem.
Seite 2 von 2