Ableitung einer Potenzfunktion

Teilaufgabe 1b

Bestimmen Sie rechnerisch die \(x\)-Koordinaten der beiden Extrempunkte von \(G_{f}\).

(zur Kontrolle: \(f'(x) = (x^{2} - 2x - 1) \cdot e^{-x}\))

(4 BE)

Teilaufgabe 1b

Bestimmen Sie das jeweilige Monotonieverhalten von \(f\) in den drei Teilintervallen \(]-\infty;-2[\), \(]-2;2[\) und \(]2;+\infty[\) der Definitionsmenge. Berechnen Sie zudem die Steigung der Tangente an \(G_{f}\) im Punkt \((0|f(0))\).

(zur Kontrolle: \(f'(x) = -\dfrac{6 \cdot (x^{2} + 4)}{(x^{2} - 4)^{2}}\))

(5 BE)

Teilaufgabe 3b

Gegeben ist eine in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto ax^{2} + c\) mit \(a, c \in \mathbb R\), deren Graph im Punkt \(N(1|0)\) die Tangente mit der Gleichung \(y = -x + 1\) besitzt. Bestimmen Sie \(a\) und \(c\).

(3 BE)

Teilaufgabe 4b

Die Tangente an den Graphen von \(f\) im Punkt \(Q_{a}\) wird mit \(t_{a}\) bezeichnet. Bestimmen Sie rechnerisch denjenigen Wert von \(a \in \mathbb R\), für den \(t_{a}\) durch \(P\) verläuft.

(3 BE)

Teilaufgabe 3a

Betrachtet wird die in \(\mathbb R^{+}\) definierte Funktion \(f\) mit \(f(x) = \dfrac{1}{\sqrt{x^{3}}}\).

Zeigen Sie, dass die in \(\mathbb R^{+}\) definierte Funktion \(F\) mit \(F(x) = -\dfrac{2}{\sqrt{x}}\) eine Stammfunktion von \(f\) ist.

(2 BE)

Teilaufgabe 2c

Bestimmen Sie die momentane Änderungsrate des Flächeninhalts des Algenteppichs zu Beobachtungsbeginn.

(4 BE)

Teilaufgabe 1b

Für jeden Wert \(s > 0\) legen die Punkte \((0|1)\), \((s|1)\), \((s|f(s))\) und \((0|f(s))\) ein Rechteck mit dem Flächeninhalt \(R(s)\) fest.

Zeichnen Sie dieses Rechteck für \(s = 5\) in die Abbildung 1 ein.
Zeigen Sie, dass \(R(s)\) für einen bestimmten Wert von \(s\) maximal ist, und geben Sie diesen Wert von \(s\) an.

Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

(zur Kontrolle: \(R(s) = 7s \cdot e^{-0{,}2s}\))

(7 BE)

Teilaufgabe 3b

Zeigen Sie, dass es einen Wert von \(k > 0\) gibt, für den \(A(k)\) maximal ist. Berechnen Sie diesen Wert von \(k\) sowie den Flächeninhalt des zugehörigen Dreiecks \(P_{k}Q_{k}R\).

(6 BE)

Teilaufgabe 1b

Untersuchen Sie rechnerisch das Monotonieverhalten von \(G_{f}\).

(zur Kontrolle: \(f'(x) = \dfrac{4x}{(x^{2} + 1)^{2}}\))

(4 BE)

Teilaufgabe 1b

Ermitteln Sie den Term der Ableitungsfunktion \(g'\) von \(g\).

(2 BE)