Abstand zwischen Punkt und Ebene

  • Aufgabe 1

    Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

    Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

    a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

    b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

    c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

    d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

    e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

    Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

     

    Aufgabe 2

    Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

    Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

     

    Aufgabe 3

    Abbildung Klausur Q12/2-002 Aufgabe 3, Wahrscheinlichkeitsverteilung einer nach B(n;p) binomialverteilten Zufallsgröße X

    Die Abbildung zeigt die vollständige Wahrscheinlichkeitsverteilung einer nach \(B(n;p)\) binomialverteilten Zufallsgröße \(X\) und kennzeichnet die Lage des Erwartungswerts \(\mu = E(X)\).

    Bestimmen Sie mithilfe der Abbildung und unter Verwendung des Stochastischen Tafelwerks die Werte der Parameter \(n\) und \(p\). Erläutern Sie Ihre Vorgehensweise.

     

    Aufgabe 4

    Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

    a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

    (mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

    b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

    c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

    d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

     

    Aufgabe 5

    Gegeben ist die Gerade \(g\) mit der Gleichung \(g \colon \overrightarrow{X} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) sowie die Kugel \(K\) mit dem Mittelpunkt \(M(3|4|5)\) und dem Radius \(r = 3\).

    Zeigen Sie durch Rechnung, dass die Gerade \(g\) die Kugel \(K\) tangiert.

  • Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

    a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

    (mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

    b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

    c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

    d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

  • Berechnen Sie den Abstand des Punktes \(P\,(2|3|-3)\) von \(E\).

    (3 BE)

  • Die Ebene \(M\,\colon\; x_1 - x_2 + x_3 = 3\) schneidet den Würfel in einem regulären Sechseck.

    Begründen Sie, dass \(M\) parallel zu \(L\) ist. Geben Sie die Schnittpunkte von \(M\) mit der \(x_1\)-Achse sowie mit der \(x_3\)-Achse an und weisen Sie nach, dass \(M\) den Mittelpunkt der Strecke \([BC]\) enthält.

    (4 BE)

  • Untersuchen Sie rechnerisch, ob die Kugel mit Mittelpunkt \(Z\,(1|6|3)\) und Radius 7 die Ebene \(E\) schneidet.

    (4 BE)

  • Weisen Sie nach, dass die Kugel die \(x_1x_2\)-Ebene berührt.

    (2 BE)

  • Der einfallende Lichtstrahl wird in demjenigen Punkt des Spiegels reflektiert, der im Modell durch den Punkt \(R\) dargestellt wird. Der reflektierte Lichtstrahl geht für einen Beobachter scheinbar von einer Lichtquelle aus, deren Position im Modell durch den Punkt \(Q\,(0|0|1)\) beschrieben wird (vgl. Abbildung).

    Abbildung zu Teilaufgabe c

    Zeigen Sie, dass die Punkte \(P\) und \(Q\) bezüglich der Ebene \(E\) symmetrisch sind.

    (3 BE)

  • Im Zelt ist eine Lichtquelle so aufgehängt, dass sie von jeder der vier Wände einen Abstand von 50 cm hat. Ermitteln Sie die Koordinaten des Punkts, der im Modell die Lichtquelle darstellt.

    (4 BE)

  • Die Spitze einer Pyramide mit der Grundfläche \(IJKL\) liegt auf der Kante \([FG]\). Untersuchen Sie, ob die Höhe dieser Pyramide 2 betragen kann.

    (4 BE)

  • Abbildung Teilaufgabe d Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2021

    Ein auf einer Stange montierter Brunnen besteht aus einer Marmorkugel, die in einer Bronzeschale liegt. Die Marmorkugel berührt die vier Innenwände der Bronzeschale an jeweils genau einer Stelle. Die Bronzeschale wird im Modell durch die Seitenflächen der Pyramide \(ABCDS\) beschrieben, die Marmorkugel durch eine Kugel mit Mittelpunkt \(M(0|0|4)\) und Radius \(r\). Die \(x_{1}x_{2}\)-Ebene des Koordinatensystems stellt im Modell den horizontal verlaufenden Erdboden dar; eine Längeneinheit entspricht einem Dezimeter in der Realität.

    Ermitteln Sie den Durchmesser der Marmorkugel auf Zentimeter genau.

    (zur Kontrolle: \(r = \sqrt{6}\))

    (4 BE)

  • Untersuchen Sie, ob \(K\) die \(x_1x_2\)-Ebene schneidet.

    (2 BE)

  • Von der Boje aus taucht der Fotograf senkrecht bezüglich der Wasseroberfläche nach unten bis zu einer Stelle, deren Abstand zum Meeresboden genau drei Meter beträgt und im Modell durch den Punkt \(K\) dargestellt wird.

    Bestimmen Sie rechnerisch, welche Tiefe unter der Wasseroberfläche der Fotograf bei diesem Tauchvorgang erreicht.

    (5 BE)

  • Berechnen Sie die Größe des Neigungswinkels der Seitenkante \([BS]\) gegen die Ebene \(E\) sowie das Volumen \(V\) der Pyramide.

    (Teilergebnis: \(V = 216\))

    (7 BE)

  • Welche Lagebeziehung muss eine Gerade zur Ebene \(E\) haben, wenn für jeden Punkt \(P\) dieser Geraden die Pyramide \(ABCP\) das gleiche Volumen wie die Pyramide \(ABCS\) besitzen soll? Begründen Sie Ihre Antwort.

    (3 BE)

  • Das Prisma ist das Modell eines Holzkörpers, der auf einer durch die \(x_1x_2\)-Ebene beschriebenen horizontalen Fläche liegt. Der Punkt \(M\,(5|6{,}5|3)\) ist Mittelpunkt einer Kugel, die die Seitenfläche \(BSTC\) im Punkt \(W\) berührt.

    Berechnen Sie den Radius \(r\) der Kugel sowie die Koordinaten von \(W\,\).

    (Teilergebnis: \(r = 1{,}5\))

    (6 BE)

Seite 1 von 2