Anzeige nach Tag: Allgemeine Geradengleichung

Teilaufgabe 1b

Zeigen Sie, dass \(G_{f}\) im Punkt \(W(5|0)\) einen Wendepunkt besitzt, und ermitteln Sie eine Gleichung der Tangente an \(G_{f}\) im Punkt \(W\).

(6 BE)

Teilaufgabe 1b

Zeigen Sie, dass \(G_{f}\) genau einen Wendepunkt \(W\) besitzt, und bestimmen Sie dessen Koordinaten sowie die Gleichung der Tangente an \(G_{f}\) im Punkt \(W\).

(zur Kontrolle: \(x\)-Koordinate von \(W\): \(e\))

(6 BE)

Teilaufgabe 2

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = -x^{3} + 9x^{2} -15x -25\). Weisen Sie nach, dass \(f\) folgende Eigenschaften besitzt:

(1) Der Graph von \(f\) besitzt an der Stelle \(x = 0\) die Steigung \(-15\).

(2) Der Graph von \(f\) besitzt im Punkt \(A(5|f(5))\) die \(x\)-Achse als Tangente.

(3) Die Tangente \(t\) an den Graphen der Funktion \(f\) im Punkt \(B(-1|f(-1))\) kann durch die Gleichung \(y = -36x - 36\) beschrieben werden.

(5 BE)

Teilaufgabe 1

Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{3x - 5}\) mit maximalem Definitionsbereich \(D\). Geben Sie \(D\) an und bestimmen Sie die Gleichung der Tangente an den Graphen von \(f\) im Punkt \((3|f(3))\).

(6 BE)

Teilaufgabe 3

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = -x^{3} + 9x^{2} -15x -25\). Weisen Sie nach, dass \(f\) folgende Eigenschaften besitzt:

(1) Der Graph von \(f\) besitzt an der Stelle \(x = 0\) die Steigung \(-15\).

(2) Der Graph von \(f\) besitzt im Punkt \(A(5|f(5))\) die \(x\)-Achse als Tangente.

(3) Die Tangente \(t\) an den Graphen der Funktion \(f\) im Punkt \(B(-1|f(-1))\) kann durch die Gleichung \(y = -36x - 36\) beschrieben werden.

(5 BE)

Aufgaben

Aufgabe 1

Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

 

Aufgabe 2

Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

 

Aufgabe 3

Abbildung Klausur Q12/2-002 Aufgabe 3, Wahrscheinlichkeitsverteilung einer nach B(n;p) binomialverteilten Zufallsgröße X

Die Abbildung zeigt die vollständige Wahrscheinlichkeitsverteilung einer nach \(B(n;p)\) binomialverteilten Zufallsgröße \(X\) und kennzeichnet die Lage des Erwartungswerts \(\mu = E(X)\).

Bestimmen Sie mithilfe der Abbildung und unter Verwendung des Stochastischen Tafelwerks die Werte der Parameter \(n\) und \(p\). Erläutern Sie Ihre Vorgehensweise.

 

Aufgabe 4

Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

(mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

 

Aufgabe 5

Gegeben ist die Gerade \(g\) mit der Gleichung \(g \colon \overrightarrow{X} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) sowie die Kugel \(K\) mit dem Mittelpunkt \(M(3|4|5)\) und dem Radius \(r = 3\).

Zeigen Sie durch Rechnung, dass die Gerade \(g\) die Kugel \(K\) tangiert.

Lösung - Aufgabe 1

Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

Lösung - Aufgabe 3

Der Graph der Funktion \(f \colon x \mapsto \ln{x}\) und die Normale \(N\) im Punkt \(P(e|f(e))\) schließen im ersten Quadranten ein Flächenstück mit dem Flächeninhalt \(A\) ein.

a) Skizzieren Sie den Graphen \(G_{f}\) der Funktion \(f\) sowie die Normale \(N\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\).

b) Berechnen Sie den Flächeninhalt \(A\). Rechnen Sie mit exakten Werten.

Aufgaben

Aufgabe 1

Geben Sie von folgenden Funktionen jeweils die maximale Definitionsmenge an. Bestimmen Sie jeweils die erste Ableitung der Funktion und vereinfachen Sie den Term der Ableitungsfunktion soweit wie möglich.

 

a) \(f(x) = -2\cos{(3- x)}\)

b) \(g(x) = \ln{\left( 2 - x^{2} \right)}\)

c) \(h(x) = \dfrac{-2 + e^{x}}{e^{x} - 1}\)

 

Aufgabe 2

Geben Sie zu jeder der folgenden Funktionen eine Stammfunktion an.

 

a) \(f(x) = \dfrac{2}{x^{2}}; \; D_{f} = \mathbb R \backslash \{0\}\)

b) \(g(x) = -\dfrac{1}{3}\sin(3x - 2); \; D_{g} = \mathbb R\)

 

Aufgabe 3

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \sqrt{x^{2} + 9} - 1\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet

 

a) Bestimmen Sie die Definitions- und Wertemenge der Funktion \(f\).

b) Untersuchen Sie die Umkehrbarkeit der Funktion \(f\).

c) Ermitteln sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) mit \(D_{f} = \mathbb R^{+}\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an.

d) Geben Sie an, welche Eigenschaft alle Schnittpunkte des Graphen der Funktion \(f\) und des Graphen der Umkehrfunktion \(f^{-1}\) haben und begründen Sie Ihre Aussage.

 

Aufgabe 4

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto x \cdot e^{4 - 0{,}25x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

b) Bestimmen Sie die Nullstelle(n) von \(f\) sowie die Lage und Art des/der Extrempunkte(s) von \(G_{f}\).

c) Ermitteln Sie die Gleichung der Normale \(N\) im Punkt P\((0|f(0))\).

 

Aufgabe 5

Die Punkte \(A(3|-1|5)\), \(B(5|3|1)\) und \(C(7|-3|9)\) legen das Dreieck \(ABC\) fest.

 

a) Weisen Sie nach, dass das Dreieck \(ABC\) gleichschenklig ist.

b) Berechnen Sie die Maßzahl des Flächeninhalts des Dreiecks \(ABC\).

c) Berechnen Sie die Koordinaten des Punktes \(D\), der das Dreieck \(ABC\) zu einer Raute ergänzt.

d) Berechnen Sie den Winkel \(\measuredangle{DBA} = \varphi\).

e) Der Punkt \(S(4,6,10)\) ist die Spitze der Pyramide \(ABCS\), deren Grundfläche das Dreieck \(ABC\) ist. Weisen Sie nach, dass die Strecke \([MS]\) des Mittelpunkts \(M\) der Grundkante \([BC]\) und der Pyramidenspitze \(S\) die Höhe der Pyramide \(ABCS\) ist.

f) Berechnen Sie die Maßzahl des Volumens der Pyramide \(ABCS\).

Lösung - Aufgabe 4

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto x \cdot e^{4 - 0{,}25x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

b) Bestimmen Sie die Nullstelle(n) von \(f\) sowie die Lage und Art des/der Extrempunkte(s) von \(G_{f}\).

c) Ermitteln Sie die Gleichung der Normale \(N\) im Punkt P\((0|f(0))\).