Analysis 2

Teilaufgabe 2d

Es wird das Flächenstück zwischen \(G_{g}\) und der \(x\)-Achse im Bereich \(-\ln{3} \leq x \leq b\) mit \(b \in \mathbb R^{+}\) betrachtet. Bestimmen Sie den Wert von \(b\) so. dass die \(y\)-Achse dieses Flächenstück halbiert.

(6 BE)

Teilaufgabe 2c

Der Graph der Funktion \(g^{*}\) geht aus \(G_{g}\) durch Strecken und Verschieben hervor. Die Wertemenge von \(g^{*}\) ist \(]-1;1[\). Geben Sie einen möglichen Funktionsterm für \(g^{*}\) an.

(2 BE)

Teilaufgabe 2b

Geben Sie \(g'(0)\) an un zeichnen Sie \(G_{g}\) im Bereich \(-4 \leq x \leq 4\) unter Berücksichtigung der bisherigen Ergebnisse und der Tatsache, dass \(G_{g}\) in \(W(0|g(0))\) seinen einzigen Wendepunkt hat, in ein Koordinatensystem ein.

(3 BE)

Teilaufgabe 2a

Betrachtet wird die in \(\mathbb R\) definierte Funktion \(g \colon x \mapsto \dfrac{e^{x}}{e^{x} + 1}\). Ihr Graph wird mit \(G_{g}\) bezeichnet.

Zeigen Sie, dass \(g\) streng monoton zunehmen ist und die Wertemenge \(]0;1[\) besitzt.

(zur Kontrolle: \(g'(x) = \dfrac{e^{x}}{(e^{x} + 1)^{2}}\))

(5 BE)

Teilaufgabe 1i

Beurteilen Sie, ob es einen Wert von \(k\) gibt, sodass \(G_{k}\) und \(G_{f}\) bezüglich der \(x\)-Achse symmetrisch zueinander liegen.

(2 BE)

Teilaufgabe 1h

Für einen bestimmten Wert von \(k\) besitzt \(G_{k}\) zwei Schnittpunkte mit der \(x\)-Achse, die voneinander den Abstand 4 haben. Berechnen Sie diesen Wert.

(3 BE)

Teilaufgabe 1g

Betrachtet wird nun die Schar der in \(\mathbb R\) definierten Funktionen \(h_{k} \colon x \mapsto (1 - kx^{2}) \cdot e^{-x}\) mit \(k \in \mathbb R\). Der Graph von \(h_{k}\) wird mit \(G_{k}\) bezeichnet. Für \(k = 1\) ergibt sich die bisher betrachtetet Funktion \(f\).

Geben Sie in Abhängigkeit von \(k\) die Anzahl der Nullstellen von \(h_{k}\) an.

(2 BE)

Teilaufgabe 1f

Deuten Sie die Aussage \(F(2{,}5) - F(0) \approx 0\) in Bezug auf \(G_{f}\) geometrisch.

(2 BE)