Anzeige nach Tag: Binomialverteilung

Teilaufgabe 3a

Die Inhaberin der Losbude beschäftigt einen Angestellten, der Besucher des Volksfests anspricht, um diese zum Kauf von Losen zu animieren. Sie ist mit der Erfolgsquote des Angestellten unzufrieden.

Die Inhaberin möchte dem Angestellten das Gehalt kürzen, wenn weniger als 15 % der angesprochenen Besucher Lose kaufen. Die Entscheidung über die Gehaltskürzung soll mithilfe eines Signifikanztests auf der Grundlage von 100 angesprochenen Besuchern getroffen werden. Dabei soll möglichst vermieden werden, dem Angestellten das Gehalt zu Unrecht zu kürzen. Geben Sie die entsprechende Nullhypothese an und ermitteln Sie die zugehörige Entscheidungsregel auf dem Signifikanzniveau von 10 %.

(5 BE)

Teilaufgabe 1c

Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert der Zufallsgröße \(X\) höchstens um eine Standardabweichung vom Erwartungswert der Zufallsgröße abweicht.

(4 BE)

Teilaufgabe 1b

Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit mit dem Term \(\sum \limits_{i\,=\,5}^{8}B\left( 25;\frac{1}{6};i \right)\) berechnet werden kann.

(2 BE)

Teilaufgabe 1a

Jeder sechste Besucher eines Volksfests trägt ein Lebkuchenherz um den Hals. Während der Dauer des Volksfests wird 25-mal ein Besucher zufällig ausgewählt. Die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Besucher, die ein Lebkuchenherz tragen.

Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den ausgewählten Besuchern höchstens ein Besucher ein Lebkuchenherz trägt.

(2 BE)

Teilaufgabe 2d

Das Unternehmen richtet ein Online-Portal zur Reservierung ein und vermutet, dass dadurch der Anteil der Personen mit Reservierung, die zur jeweiligen Fahrt nicht erscheinen, zunehmen könnte. Als Grundlage für die Entscheidung darüber, ob pro Fahrt künftig mehr als 64 Reservierungen zugelassen werden, soll die Nullhypothese „Die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, beträgt höchstens 10 %." mithilfe einer Stichprobe von 200 Personen mit Reservierung auf einem Signifikanzniveau von 5 % getestet werden. Vor der Durchführung des Tests wird festgelegt, die Anzahl der für eine Fahrt möglichen Reservierungen nur dann zu erhöhen, wenn die Nullhypothese aufgrund des Testergebnisses abgelehnt werden müsste.

Ermitteln Sie die zugehörige Entscheidungsregel.

(5 BE)

Teilaufgabe 2b

Bestimmen Sie die Wahrscheinlichkeit dafür, dass keine Person mit Reservierung abgewiesen werden muss.

(3 BE)

Teilaufgabe 2a

Möchte man an einer Fahrt teilnehmen, so muss man dafür im Voraus eine Reservierung vornehmen, ohne dabei schon den Fahrpreis bezahlen zu müssen. Erfahrungsgemäß erscheinen von den Personen mit Reservierung einige nicht zur Fahrt. Für die 60 zur Verfügung stehenden Plätze lässt das Unternehmen deshalb bis zu 64 Reservierungen zu. Es soll davon ausgegangen werden, dass für jede Fahrt tatsächlich 64 Reservierungen vorgenommen werden. Erscheinen mehr als 60 Personen mit Reservierung zur Fahrt, so können nur 60 von ihnen daran teilnehmen; die übrigen müssen abgewiesen werden.
Die Zufallsgröße \(X\) beschreibt die Anzahl der Personen mit Reservierung, die nicht zur Fahrt erscheinen. Vereinfachend soll angenommen werden, dass \(X\) binomialverteilt ist, wobei die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, 10 % beträgt. Die auf der nächsten Seite abgebildete Tabelle ergänzt das zugelassene Tafelwerk (vgl. Seitenende).

Geben Sie einen Grund an, dass es sich bei der Annahme, die Zufallsgröße \(X\) ist binomialverteilt, im Sachzusammenhang um eine Vereinfachung handelt.

(1 BE)

Teilaufgabe 1b

Die Kunststoffteile werden aus Kunststoffgranulat hergestellt. Nach einem Wechsel des Granulats vermutet der Produktionsleiter, dass sich der Anteil der fehlerhaften Teile reduziert hat. Um einen Anhaltspunkt dafür zu gewinnen, ob die Vermutung gerechtfertigt ist, soll die Nullhypothese „Der Anteil der fehlerhaften Teile beträgt mindestens 4 %." auf der Grundlage einer Stichprobe von 200 Teilen auf einem Signifikanzniveau von 5 % getestet werden.

Bestimmen sie die zugehörige Entscheidungsregel.

(4 BE)

Teilaufgabe 1a

Ein Unternehmen stellt Kunststoffteile her. Erfahrungsgemäß sind 4 % der hergestellten Teile fehlerhaft. Die Anzahl fehlerhafter Teile unter zufällig ausgewählten kann als binomialverteilt angenommen werden.

50 Kunststoffteile werden zufällig ausgewählt. Bestimmen Sie für die folgenden Ereignisse jeweils die Wahrscheinlichkeit:

\(A\):  „Genau zwei der Teile sind fehlerhaft."

\(B\):  „Mindestens 6 % der Teile sind fehlerhaft."

(3 BE)

Teilaufgabe 1c

Bestimmen Sie unter Verwendung dieser Binomialverteilung die kleinste Geschwindigkeit \(v^{*}\), für die die folgende Aussage zutrifft: „Bei mehr als 95 % der erfassten Fahrten wird \(v^{*}\) nicht überschritten."

(2 BE)