Ebenengleichung in Normalenform

Teilaufgabe b

Das Dreieck \(ABF\) liegt in der Ebene \(W\). Ermitteln Sie eine Gleichung von \(W\) in Koordinatenform und beschreiben Sie die besondere Lage von \(W\) im Koordinatensystem.

(zur Kontrolle: \(W \colon 4x_{2} + 3x_{3} - 20 = 0\))

(4 BE)

Teilaufgabe b

Bestimmen Sie die Gleichung der Ebene \(F\) in Koordinatenform.

(zur Kontrolle: \(F \colon x_{1} + x_{2} - 2x_{3} + 2 = 0\))

(3 BE)

Teilaufgabe a

Gegeben ist die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}\), \(\lambda \in \mathbb R\), sowie eine weitere Gerade \(h\), welche parallel zu \(g\) ist und durch den Punkt \(A(2|0|0)\) verläuft. Der Punkt \(B\) liegt auf \(g\) so, dass die Geraden \(AB\) und \(h\) senkrecht zueinander sind.

Bestimmen Sie die Koordinaten von \(B\).

(zur Kontrolle: \(B(-2|3|2)\))

(4 BE)

Teilaufgabe b

Berechnen Sie die Größe des Schnittwinkels von \(g\) und \(E\) und zeigen Sie, dass \(S(0{,}5|6{,}5|0)\) der Schnittpunkt von \(g\) und \(E\) ist.

(5 BE)

Teilaufgabe a

Gegeben sind in einem kartesischen Koordinatensystem die Ebene \(E \colon 4x_{1} - 8x_{2} + x_{3} + 50 = 0\) und die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 3 \\ 12 \\ -2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix}, \; \lambda \in \mathbb R\,.\)

Erläutern Sie, warum die folgende Rechnung ein Nachweis dafür ist, dass \(g\) und \(E\) genau einen gemeinsamen Punkt haben:

\[\begin{pmatrix} 4 \\ -8 \\ 1 \end{pmatrix} \circ \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix} = -72 \neq 0\]

(1 BE)

Teilaufgabe e

Die Ebene \(F\) schneidet die \(x_{1}x_{2}\)-Ebene in der Geraden \(g\). Bestimmen Sie eine Gleichung von \(g\).

(zur Kontrolle: \(g \colon \overrightarrow{X} = \begin{pmatrix} 30 \\ 0 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}, \; \lambda \in \mathbb R\))

(3 BE)

Teilaufgabe d

Der Punkt \(L\), der vertikal über dem Mittelpunkt der Kante \([A_{1}A_{2}]\) liegt, veranschaulicht im Modell die Position einer Flutlichtanlage, die 12 m über der Grundfläche angebracht ist. Die als punktförmig angenommene Lichtquelle beleuchtet - mit Ausnahme des Schattenbereichs in der Nähe der Hallenwände - das gesamte Gelände um die Halle.

Die Punkte \(L\), \(B_{2}\) und \(B_{3}\) legen eine Ebene \(F\) fest. Ermitteln Sie eine Gleichung von \(F\) in Normalenform.

(zur Kontrolle: \(F \colon 3x_{1} + x_{2} + 5x_{3} - 90 = 0\))

(5 BE)

Teilaufgabe b

Berechnen Sie die Größe des Neigungswinkels der Dachfläche gegenüber der Horizontalen.

(3 BE)

Teilaufgabe a

Die Abbildung 1 zeigt modellhaft eine Mehrzweckhalle, die auf einer horizontalen Fläche steht und die Form eines geraden Prismas hat.

Die Punkte \(A_{1}(0|0|0)\), \(A_{2}(20|0|0)\), \(A_{3}\) und \(A_{4}(0|10|0)\) stellen im Modell die Eckpunkte der Grundfläche der Mehrzweckhalle dar, die Punkte \(B_{1}\), \(B_{2}\), \(B_{3}\) und \(B_{4}\) die Eckpunkte der Dachfläche. Diejenige Seitenwand, die im Modell in der \(x_{1}x_{3}\)-Ebene liegt, ist 6 m hoch, die ihr gegenüberliegende Wand nur 4 m.

Abbildung 1 Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2020

Eine Längeneinheit im Koordinatensystem entspricht 1 m, d.h. die Mehrzweckhalle ist 20 m lang.

Geben Sie die Koordinaten der Punkte \(B_{2}\), \(B_{3}\) und \(B_{4}\) an und bestätigen Sie, dass diese Punkte in der Ebene \(E \colon x_{2} + 5x_{3} - 30 = 0\) liegen.

(4 BE)

Teilaufgabe b

Ermitteln Sie eine Gleichung der Ebene \(T\) in Normalenform.

(zur Kontrolle: \(T \colon 5x_{1} + 4x_{2} + 5x_{3} - 30 = 0\))

(3 BE)