Exponentialgleichung

Teilaufgabe 2b

Bestimmen Sie denjenigen Wert \(x_{0}\), für den \(A(x_{0}) = 4\) gilt, und interpretieren sie Ihr Ergebnis im Sachzusammenhang. 

(4 BE)

Aufgaben

Aufgabe 1

Geben Sie von folgenden Funktionen jeweils die maximale Definitionsmenge an. Bestimmen Sie jeweils die erste Ableitung der Funktion und vereinfachen Sie den Term der Ableitungsfunktion soweit wie möglich.

 

a) \(f(x) = -2\cos{(3- x)}\)

b) \(g(x) = \ln{\left( 2 - x^{2} \right)}\)

c) \(h(x) = \dfrac{-2 + e^{x}}{e^{x} - 1}\)

 

Aufgabe 2

Geben Sie zu jeder der folgenden Funktionen eine Stammfunktion an.

 

a) \(f(x) = \dfrac{2}{x^{2}}; \; D_{f} = \mathbb R \backslash \{0\}\)

b) \(g(x) = -\dfrac{1}{3}\sin(3x - 2); \; D_{g} = \mathbb R\)

 

Aufgabe 3

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \sqrt{x^{2} + 9} - 1\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet

 

a) Bestimmen Sie die Definitions- und Wertemenge der Funktion \(f\).

b) Untersuchen Sie die Umkehrbarkeit der Funktion \(f\).

c) Ermitteln sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) mit \(D_{f} = \mathbb R^{+}\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an.

d) Geben Sie an, welche Eigenschaft alle Schnittpunkte des Graphen der Funktion \(f\) und des Graphen der Umkehrfunktion \(f^{-1}\) haben und begründen Sie Ihre Aussage.

 

Aufgabe 4

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto x \cdot e^{4 - 0{,}25x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

b) Bestimmen Sie die Nullstelle(n) von \(f\) sowie die Lage und Art des/der Extrempunkte(s) von \(G_{f}\).

c) Ermitteln Sie die Gleichung der Normale \(N\) im Punkt P\((0|f(0))\).

 

Aufgabe 5

Die Punkte \(A(3|-1|5)\), \(B(5|3|1)\) und \(C(7|-3|9)\) legen das Dreieck \(ABC\) fest.

 

a) Weisen Sie nach, dass das Dreieck \(ABC\) gleichschenklig ist.

b) Berechnen Sie die Maßzahl des Flächeninhalts des Dreiecks \(ABC\).

c) Berechnen Sie die Koordinaten des Punktes \(D\), der das Dreieck \(ABC\) zu einer Raute ergänzt.

d) Berechnen Sie den Winkel \(\measuredangle{DBA} = \varphi\).

e) Der Punkt \(S(4,6,10)\) ist die Spitze der Pyramide \(ABCS\), deren Grundfläche das Dreieck \(ABC\) ist. Weisen Sie nach, dass die Strecke \([MS]\) des Mittelpunkts \(M\) der Grundkante \([BC]\) und der Pyramidenspitze \(S\) die Höhe der Pyramide \(ABCS\) ist.

f) Berechnen Sie die Maßzahl des Volumens der Pyramide \(ABCS\).

Lösung - Aufgabe 4

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto x \cdot e^{4 - 0{,}25x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

b) Bestimmen Sie die Nullstelle(n) von \(f\) sowie die Lage und Art des/der Extrempunkte(s) von \(G_{f}\).

c) Ermitteln Sie die Gleichung der Normale \(N\) im Punkt P\((0|f(0))\).

Aufgaben

Aufgabe 1

Bestimmen Sie jeweils die erste Ableitung der folgenden Funktionen, ohne anschließend zu vereinfachen.

 

a) \(f(x) = 2\sqrt{x} \cdot \cos(0{,}5x)\)

b) \(g(x) = \dfrac{\ln\left(\dfrac{1}{x^{3}}\right)}{2x + 3}\)

 

Aufgabe 2

Abbildung zu Aufgabe 2 Klausur Q11/2-002

Die Abbildung zeigt den Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto 4 - 2e^{x - 4}\).

 

a) Geben Sie die Definitionsmenge der Funktion \(f\) an. Bestimmen Sie das Verhalten an den Rändern des Definitionsbereichs. Geben Sie die Wertemenge der Funktion \(f\) an.

b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist.

c) Berechnen Sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an. Skizzieren Sie den Graphen der Umkehrfunktion \(f^{-1}\) in das obige Koordinatensystem.

 

Aufgabe 3

Gegeben ist die Funktion \(f\colon x \mapsto 2(e^{x} - 1)^{2}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Geben Sie die Definitionsmenge der Funktion \(f\) an.

b) Ermitteln Sie das Verhalten von \(f\) für \(x \to -\infty\) und \(x \to +\infty\). Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

c) Weisen Sie nach, dass der Koordinatenursprung absoluter Tiefpunkt von \(G_{f}\) ist. Geben Sie die Wertemenge der Funktion \(f\) an.

 

Aufgabe 4

Einer der folgenden Graphen gehört zu der in \(\mathbb R\) definierten Funktion \(f \colon \dfrac{x + 3}{e^{x}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

Geben Sie an, welcher der Graphen i, II oder III den Graphen \(G_{f}\) zeigt und begründen Sie jeweils, warum die beiden anderen Graphen nicht in Frage kommen. 

Abbildung zu Aufgabe 4 Klausur Q11 2 002

 

Aufgabe 5

An der Decke eines Hausflurs ist eine Deckenleuchte angebracht. Die Randlinie des Lichtkegels der Deckenleuchte kann näherungsweise durch die Funktion \(\displaystyle f \colon x \mapsto -3 \cdot \left( e^{0{,}4x} + e^{-0{,}5x} \right) + 9\) beschrieben werden mit \(x\) und \(y\) in Metern (vgl. Abbildung). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

Abbildung zu Aufgabe 5 Klausur Q11 2 002

 

a) Zeigen Sie, dass \(G_{f}\) nicht symmetrisch bezüglich des Koordinatensystems ist.

b) Ersetzen Sie einen Zahl \((\neq 0)\) des Funktionsterms \(f(x)\) so, dass \(G_{f}\) symmetrisch ist und geben Sie die Art der Symmetrie an.

Eine Feinjustierung der LEDs der Deckenleuchte verändert den Lichtkegel. Die Randlinie des Lichtkegels wird nun näherungsweise durch die Funktion \(g \colon x \mapsto -3 \cdot \left( e^{0{,}5x} + e^{-0{,}5x} \right) + 9\) beschrieben. Der Graph der Funktion \(g\) wird mit \(G_{g}\) bezeichnet.

c) Bestimmen Sie die Schnittpunkte von \(G_{g}\) mit den Koordinatenachsen. Hinweis: Verwenden Sie die Substitution \(u = e^{0{,}5x}\) zur Bestimmung der Schnittpunkte mit der \(x\)-Achse.

d) Berechnen Sie den Winkel, unter dem \(G_{g}\) die negative \(x\)-Achse schneidet.

e) Die Position der Aufhängung der Deckenleuchte entspricht der Lage des Hochpunkts von \(G_{g}\). Die Aufhängung ist 85 cm von der Decke entfernt. Berechnen Sie die Raumhöhe \(h\) des Hausflurs, an dessen Decke die Deckenleuchte angebracht ist.

 

Aufgabe 6

Der Punkt \(A(4|-1|0)\) ist Mittelpunkt der Kugel \(K\), auf deren Oberfläche der Punkt \(B(-1|1|4)\) liegt. 

Ermitteln Sie die Koordinaten eines weiteren Punktes \(C\), der ebenfalls auf der Kugeloberfläche liegt.

Lösung - Aufgabe 5

An der Decke eines Hausflurs ist eine Deckenleuchte angebracht. Die Randlinie des Lichtkegels der Deckenleuchte kann näherungsweise durch die Funktion \(\displaystyle f \colon x \mapsto -3 \cdot \left( e^{0{,}4x} + e^{-0{,}5x} \right) + 9\) beschrieben werden mit \(x\) und \(y\) in Metern (vgl. Abbildung). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

Abbildung zu Aufgabe 5 Klausur Q11 2 002

 

a) Zeigen Sie, dass \(G_{f}\) nicht symmetrisch bezüglich des Koordinatensystems ist.

b) Ersetzen Sie einen Zahl \((\neq 0)\) des Funktionsterms \(f(x)\) so, dass \(G_{f}\) symmetrisch ist und geben Sie die Art der Symmetrie an.

Eine Feinjustierung der LEDs der Deckenleuchte verändert den Lichtkegel. Die Randlinie des veränderten Lichtkegels wird nun näherungsweise durch die Funktion \(g \colon x \mapsto -3 \cdot \left( e^{0{,}5x} + e^{-0{,}5x} \right) + 9\) beschrieben. Der Graph der Funktion \(g\) wird mit \(G_{g}\) bezeichnet.

c) Bestimmen Sie die Schnittpunkte von \(G_{g}\) mit den Koordinatenachsen. Hinweis: Verwenden Sie die Substitution \(u = e^{0{,}5x}\) zur Bestimmung der Schnittpunkte mit der \(x\)-Achse.

d) Berechnen Sie den Winkel, unter dem \(G_{g}\) die negative \(x\)-Achse schneidet.

e) Die Position der Aufhängung der Deckenleuchte entspricht der Lage des Hochpunkts von \(G_{g}\). Die Aufhängung ist 85 cm von der Decke entfernt. Berechnen Sie die Raumhöhe \(h\) des Hausflurs, an dessen Decke die Deckenleuchte angebracht ist.

Teilaufgabe 2c

Begründen Sie rechnerisch, dass zu keinem Zeitpunkt die Anteile der drei Kernsorten gleich groß sind.

(3 BE)

Teilaufgabe 2a

Eine Funktion \(f\) ist durch \(f(x) = 2 \cdot e^{\frac{1}{2}x} - 1\) mit \(x \in \mathbb R\) gegeben.

Ermitteln Sie die Nullstelle der Funktion \(f\).

(2 BE)

Teilaufgabe 2a

Eine Funktion \(f\) ist durch \(f(x) = 2 \cdot e^{\frac{1}{2}x} - 1\) mit \(x \in \mathbb R\) gegeben.

Ermitteln Sie die Nullstelle der Funktion \(f\).

(2 BE)

Teilaufgabe 3a

In einem Labor wird ein Verfahren zur Reinigung von mit Schadstoffen kontaminiertem Wasser getestet. Die Funktion \(h\) aus Aufgabe 2 beschreibt für \(x \geq 0\) modellhaft die zeitliche Entwicklung des momentanen Schadstoffabbaus in einer bestimmten Wassermenge. Dabei bezeichnet \(h(x)\) die momentane Schadstoffabbaurate in Gramm pro Minute und \(x\) die seit Beginn des Reinigungsvorgangs vergangene Zeit in Minuten.

Bestimmen Sie auf der Grundlage des Modells den Zeitpunkt \(x\), zu dem die momentane Schadstoffabbaurate auf 0,01 Gramm pro Minute zurückgegangen ist.

(3 BE)