Flächeninhalt eines Dreiecks

Teilaufgabe 1b

Begründen Sie, dass die Dreiecke \(BCM\) und \(ABM\) den gleichen Flächeninhalt besitzen, ohne diesen zu berechnen.

(2 BE)

Teilaufgabe b

Der Hersteller des Sonnensegels empfiehlt, die verwendeten Metallstangen bei einer Sonnensegelfläche von mehr als 20 m² durch zusätzliche Sicherungsseile zu stabilisieren. Beurteilen Sie, ob eine solche Sicherung aufgrund dieser Empfehlung in der vorliegenden Situation nötig ist

(3 BE)

Lösung - Aufgabe 4

Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

(mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

Aufgaben

Aufgabe 1

Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

 

Aufgabe 2

Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

 

Aufgabe 3

Abbildung Klausur Q12/2-002 Aufgabe 3, Wahrscheinlichkeitsverteilung einer nach B(n;p) binomialverteilten Zufallsgröße X

Die Abbildung zeigt die vollständige Wahrscheinlichkeitsverteilung einer nach \(B(n;p)\) binomialverteilten Zufallsgröße \(X\) und kennzeichnet die Lage des Erwartungswerts \(\mu = E(X)\).

Bestimmen Sie mithilfe der Abbildung und unter Verwendung des Stochastischen Tafelwerks die Werte der Parameter \(n\) und \(p\). Erläutern Sie Ihre Vorgehensweise.

 

Aufgabe 4

Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

(mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

 

Aufgabe 5

Gegeben ist die Gerade \(g\) mit der Gleichung \(g \colon \overrightarrow{X} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) sowie die Kugel \(K\) mit dem Mittelpunkt \(M(3|4|5)\) und dem Radius \(r = 3\).

Zeigen Sie durch Rechnung, dass die Gerade \(g\) die Kugel \(K\) tangiert.

Lösung - Aufgabe 5

Die Punkte \(A(3|-1|5)\), \(B(5|3|1)\) und \(C(7|-3|9)\) legen das Dreieck \(ABC\) fest.

 

a) Weisen Sie nach, dass das Dreieck \(ABC\) gleichschenklig ist.

b) Berechnen Sie die Maßzahl des Flächeninhalts des Dreiecks \(ABC\).

c) Berechnen Sie die Koordinaten des Punktes \(D\), der das Dreieck \(ABC\) zu einer Raute ergänzt.

d) Berechnen Sie den Winkel \(\measuredangle{DBA} = \varphi\).

e) Der Punkt \(S(4,6,10)\) ist die Spitze der Pyramide \(ABCS\), deren Grundfläche das Dreieck \(ABC\) ist. Weisen Sie nach, dass die Strecke \([MS]\) des Mittelpunkts \(M\) der Grundkante \([BC]\) und der Pyramidenspitze \(S\) die Höhe der Pyramide \(ABCS\) ist.

f) Berechnen Sie die Maßzahl des Volumens der Pyramide \(ABCS\).

Aufgaben

Aufgabe 1

Geben Sie von folgenden Funktionen jeweils die maximale Definitionsmenge an. Bestimmen Sie jeweils die erste Ableitung der Funktion und vereinfachen Sie den Term der Ableitungsfunktion soweit wie möglich.

 

a) \(f(x) = -2\cos{(3- x)}\)

b) \(g(x) = \ln{\left( 2 - x^{2} \right)}\)

c) \(h(x) = \dfrac{-2 + e^{x}}{e^{x} - 1}\)

 

Aufgabe 2

Geben Sie zu jeder der folgenden Funktionen eine Stammfunktion an.

 

a) \(f(x) = \dfrac{2}{x^{2}}; \; D_{f} = \mathbb R \backslash \{0\}\)

b) \(g(x) = -\dfrac{1}{3}\sin(3x - 2); \; D_{g} = \mathbb R\)

 

Aufgabe 3

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \sqrt{x^{2} + 9} - 1\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet

 

a) Bestimmen Sie die Definitions- und Wertemenge der Funktion \(f\).

b) Untersuchen Sie die Umkehrbarkeit der Funktion \(f\).

c) Ermitteln sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) mit \(D_{f} = \mathbb R^{+}\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an.

d) Geben Sie an, welche Eigenschaft alle Schnittpunkte des Graphen der Funktion \(f\) und des Graphen der Umkehrfunktion \(f^{-1}\) haben und begründen Sie Ihre Aussage.

 

Aufgabe 4

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto x \cdot e^{4 - 0{,}25x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

b) Bestimmen Sie die Nullstelle(n) von \(f\) sowie die Lage und Art des/der Extrempunkte(s) von \(G_{f}\).

c) Ermitteln Sie die Gleichung der Normale \(N\) im Punkt P\((0|f(0))\).

 

Aufgabe 5

Die Punkte \(A(3|-1|5)\), \(B(5|3|1)\) und \(C(7|-3|9)\) legen das Dreieck \(ABC\) fest.

 

a) Weisen Sie nach, dass das Dreieck \(ABC\) gleichschenklig ist.

b) Berechnen Sie die Maßzahl des Flächeninhalts des Dreiecks \(ABC\).

c) Berechnen Sie die Koordinaten des Punktes \(D\), der das Dreieck \(ABC\) zu einer Raute ergänzt.

d) Berechnen Sie den Winkel \(\measuredangle{DBA} = \varphi\).

e) Der Punkt \(S(4,6,10)\) ist die Spitze der Pyramide \(ABCS\), deren Grundfläche das Dreieck \(ABC\) ist. Weisen Sie nach, dass die Strecke \([MS]\) des Mittelpunkts \(M\) der Grundkante \([BC]\) und der Pyramidenspitze \(S\) die Höhe der Pyramide \(ABCS\) ist.

f) Berechnen Sie die Maßzahl des Volumens der Pyramide \(ABCS\).

Teilaufgabe 1f

Der Graph von \(f\) schließt mit den Koordinatenachsen ein Flächenstück ein, das durch das Dreieck mit den Eckpunkten \(O(0|0)\), \(P(\ln 2|0)\) und \(Q(0|2)\) angenähert werden kann. Berechnen Sie, um wie viel Prozent der Flächeninhalt des Dreiecks \(OPQ\) vom Inhalt des Flächenstücks abweicht.

(4 BE)

Teilaufgabe 2a

Gegeben ist die Ebene \(E \colon 2x_{1} + x_{2} - 2x_{3} = -18\).

Der Schnittpunkt von \(E\) mit der \(x_{1}\)-Achse, der Schnittpunkt von \(E\) mit der \(x_{2}\)-Achse und der Koordinatenursprung sind die Eckpunkte eines Dreiecks. Bestimmen Sie den Flächeninhalt dieses Dreiecks.

(2 BE)

Teilaufgabe 2a

Gegeben ist die Ebene \(E \colon 2x_{1} + x_{2} - 2x_{3} = -18\).

Der Schnittpunkt von \(E\) mit der \(x_{1}\)-Achse, der Schnittpunkt von \(E\) mit der \(x_{2}\)-Achse und der Koordinatenursprung sind die Eckpunkte eines Dreiecks. Bestimmen Sie den Flächeninhalt dieses Dreiecks.

(2 BE)

Lösung - Aufgabe 2

Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{3x^{2} + 3x - 6}{{(x + 1)}^{2}}\) mit dem maximalen Definitionsbereich \(D_{f}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

a) Geben Sie \(D_{f}\) an.

b) Ermitteln Sie die Koordinaten aller Schnittpunkte von \(G_{f}\) mit den Koordinatenachsen.

c) Untersuchen Sie das Verhalten der Funktion \(f\) an den Rändern des Definitionsbereichs.

d) Stellen Sie die Gleichung der Tangente \(T\) an \(G_{f}\) sowie die Gleichung der Normalen \(N\) an der Stelle \(x = 1\) auf.

e) Zeichnen Sie \(G_{f}\), die Tangente \(T\) und die Normale \(N\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

f) Bestimmen Sie den Flächeninhalt des Dreiecks, welches die Tangente \(T\) und die Normale \(N\) mit der \(y\)-Achse bilden.