Anzeige nach Tag: Flächeninhalt

Teilaufgabe 1e

Berechnen Sie den Inhalt der Fläche, die \(G_f\) mit den Koordinatenachsen und der Geraden \(x = 4\) einschließt.

(4 BE)

Teilaufgabe c

Das Rechteck \(OABC\) ist das Modell eines steilen Hanggrundstücks; die positive \(x_1\)-Achse beschreibt die südliche, die positive \(x_2\)-Achse die östliche Himmelsrichtung (im Koordinatensystem: 1 LE entspricht 1 m, d.h. die Länge des Grundstücks in West-Ost-Richtung beträgt 60 m.).

Obwohl das Rechteck \(OABC\) den Flächeninhalt 6000 besitzt, ist das Hanggrundstück auf einer Landkarte des Grundbuchamts mit einer Größe von 4800 m2 verzeichnet. Stellen Sie ausgehend von der Zeichnung aus Aufgabe b eine Vermutung an, welche sinnvolle Regelung das Grundbuchamt damit bei der Festlegung der Grundstücksgröße umsetzt. Bestätigen Sie Ihre Vermutung durch Rechnung.

(3 BE)

Teilaufgabe b

Weisen Sie nach, dass der Koordinatenursprung \(O\) mit den Punkten \(A\), \(B\) und \(C\) ein Rechteck \(OABC\) festlegt. Bestätigen Sie, dass dieses Rechteck den Flächeninhalt 6000 besitzt, und zeichnen Sie es in ein Koordinatensystem (vgl. Abbildung) ein.
Abbildung Teilaufgabe b: Koordinatensystem, Lage der Koordinatenachsen

(6 BE)

Teilaufgabe 1

Skizzieren Sie den Graphen der in \(\mathbb R\) definierten Funktion \(f : x \mapsto 4 - x^2\). Berechnen Sie den Inhalt des Flächenstücks, das der Graph von \(f\) mit der \(x\)-Achse einschließt.

(5 BE)

Teilaufgabe 1e

Berechnen Sie den Inhalt des Flächenstücks, das von \(G_f\), der \(x\)-Achse und der Strecke \([PQ_E]\) begrenzt wird.

(6 BE)

Teilaufgabe 2c

Bestimmen Sie den Inhalt des Flächenstücks, das \(G_h\), die Koordinatenachsen und die Gerade mit der Gleichung \(x = 5\) einschließen. Interpretieren Sie das Ergebnis im Sachzusammenhang.

(6 BE)