Formel von Bernoulli

Teilaufgabe 2c

Ermitteln Sie, wie viele Haushalte das Unternehmen mindestens anschreiben müsste, damit mit einer Wahrscheinlichkeit von mehr als 99 % wenigstens ein angeschriebener Haushalt, der noch nicht über einen schnellen Internetanschluss verfügt, einen solchen einrichten lassen würde. Gehen Sie davon aus, dass sich jeder hundertste angeschriebene Haushalt, der noch nicht über einen schnellen Internetanschluss verfügt, dafür entscheidet, einen solchen einrichten zu lassen.

(5 BE)

Teilaufgabe 2b

Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit durch den Term \(0{,}2^{10} + (1 - 0{,}2)^{10}\) angegeben wird.

(2 BE)

Teilaufgabe 3

Gegeben ist eine Bernoullikette mit der Länge \(n\) und der Trefferwahrscheinlichkeit \(p\). Erklären Sie, dass für alle \(k \in \{0; 1; 2; \dots; n\}\) die Beziehung \(B(n; p; k) = B(n; 1 - p; n - k)\) gilt. 

(2 BE)

Teilaufgabe 1a

In einer Urne befinden sich vier rote und sechs blaue Kugeln. Aus dieser wird achtmal eine Kugel zufällig gezogen, die Farbe notiert und die Kugel anschließend wieder zurückgelegt.

Geben Sie einen Term an, mit dem die Wahrscheinlichkeit des Ereignisses „Es werden gleich viele rote und blaue Kugeln gezogen." berechnet werden kann. 

(2 BE)

Teilaufgabe 1a

Bei der Wintersportart Biathlon wird bei jeder Schießanlage auf fünf Scheiben geschossen. Ein Biathlet tritt bei einem Einzelrennen zu einer Schießeinlage an, bei der er auf jede Scheibe einen Schuss abgibt. Diese Schießeinlage wird modellhaft durch eine Bernoullikette mit der Länge 5 und der Trefferwahrscheinlichkeit \(p\) beschrieben.

Geben Sie für die folgenden Ereignisse \(A\) und \(B\) jeweils einen Term an, der die Wahrscheinlichkeit des Ereignisses in Abhängigkeit von \(p\) beschreibt.

\(A\): „Der Biathlet trifft bei genau vier Schüssen."

\(B\): „Der Biathlet trifft nur bei den ersten beiden Schüssen."

(3 BE)

Teilaufgabe 2b

Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den 100 befragten Jugendlichen genau 85 einen Computer besitzen, wenn der Anteil derjenigen Jugendlichen, die einen Computer besitzen, unter den Jugendlichen der Kleinstadt ebenso groß ist wie unter den in der Tabelle erfassten Jugendlichen.

(3 BE)

Teilaufgabe 1b

Einem Jungen fehlen in seinem Sammelalbum noch 15 Bilder. Er geht mit seiner Mutter zum Einkaufen und erhält anschließend zwei Päckchen mit Tierbildern. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die beiden Päckchen nur Bilder enthalten, die der Junge bereits in seinem Sammelalbum hat.

(3 BE)

Teilaufgabe 2

Betrachtet wird eine Bernoullikette mit der Trefferwahrscheinlichkeit 0,9 und der Länge 20. Beschreiben Sie zu dieser Bernoullikette ein Ereignis, dessen Wahrscheinlichkeit durch den Term \(0{,}9^{20} + 20 \cdot 0{,}1 \cdot 0{,}9^{19}\) angegeben wird.

(2 BE)

Teilaufgabe 1

Der Anteil der Linkshänder in der Bevölkerung Deutschlands beträgt ein Sechstel. Aus der Bevölkerung werden acht Personen zufällig ausgewählt. Zwei der folgenden Terme I bis VI beschreiben die Wahrscheinlichkeit dafür, dass genau fünf dieser Personen Linkshänder sind. Geben Sie diese beiden Terme an.

\[\textsf{I} \hspace{15px} \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)\]
\[\textsf{II} \hspace{7px} \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]
\[\textsf{III} \hspace{9px} 1 - \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)^5\]
\[\textsf{IV} \; \binom{8}{5} \cdot \left( \frac{5}{6} \right)^5 \cdot \left( \frac{1}{6} \right)^3\]
\[\sf{V} \; \binom{8}{5} \cdot \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]
\[\sf{VI} \; \binom{8}{5} \cdot \left( \frac{1}{6} \right)^3 \cdot \left( \frac{5}{6} \right)^5\]

(2 BE) 

Teilaufgabe 3a

Zehn 40- bis 44-jährige Frauen wurden zufällig ausgewählt.

Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

\(A\,\colon\;\)„Unter ihnen sind genau drei Raucherinnen."

\(B\,\colon\;\)„Unter ihnen sind höchstens vier Raucherinnen." 

(4 BE)