Formel von Bernoulli

  • Der Anteil der Linkshänder in der Bevölkerung Deutschlands beträgt ein Sechstel. Aus der Bevölkerung werden acht Personen zufällig ausgewählt. Zwei der folgenden Terme I bis VI beschreiben die Wahrscheinlichkeit dafür, dass genau fünf dieser Personen Linkshänder sind. Geben Sie diese beiden Terme an.

    \[\textsf{I} \enspace \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)\]

    \[\textsf{II} \enspace \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]

    \[\textsf{III} \enspace 1 - \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)^5\]

    \[\textsf{IV} \enspace \binom{8}{5} \cdot \left( \frac{5}{6} \right)^5 \cdot \left( \frac{1}{6} \right)^3\]

    \[\textsf{V} \enspace \binom{8}{5} \cdot \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]

    \[\textsf{VI} \enspace \binom{8}{5} \cdot \left( \frac{1}{6} \right)^3 \cdot \left( \frac{5}{6} \right)^5\]

    (2 BE)

  • Zehn 40- bis 44-jährige Frauen wurden zufällig ausgewählt.

    Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(A\,\colon\;\)„Unter ihnen sind genau drei Raucherinnen."

    \(B\,\colon\;\)„Unter ihnen sind höchstens vier Raucherinnen." 

    (4 BE)

  • Mithilfe der Graphologie werden aus der Handschrift einer Person Rückschlüsse auf deren Persönlichkeit gezogen.

    An einer Fachschule für Graphologie ist eine Dozentenstelle neu zu besetzen. Den Bewerbern sollen im Rahmen eines Vortests Schriftproben vorgelegt werden. Jede Schriftprobe stammt entweder von einer entscheidungsfreudigen oder von einer zögerlichen Person; dies soll dem jeweiligen Bewerber mitgeteilt werden, der sich anschließend bei jeder Schriftprobe entscheiden muss, ob er sie einer entscheidungsfreudigen oder einer zögerlichen Person zuordnet. Ein Bewerber soll den Vortest bestehen, wenn er sich bei mehr als zwei Dritteln der vorgelegten Schriftproben richtig entscheidet.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass ein Bewerber, der nur rät, den Vortest besteht, wenn man ihm zwölf Schriftproben vorlegen würde.

    (5 BE)

  • Betrachtet wird eine Bernoullikette mit der Trefferwahrscheinlichkeit 0,9 und der Länge 20. Beschreiben Sie zu dieser Bernoullikette ein Ereignis, dessen Wahrscheinlichkeit durch den Term \(0{,}9^{20} + 20 \cdot 0{,}1 \cdot 0{,}9^{19}\) angegeben wird.

    (2 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den 100 befragten Jugendlichen genau 85 einen Computer besitzen, wenn der Anteil derjenigen Jugendlichen, die einen Computer besitzen, unter den Jugendlichen der Kleinstadt ebenso groß ist wie unter den in der Tabelle erfassten Jugendlichen.

    (3 BE)

  • Einem Jungen fehlen in seinem Sammelalbum noch 15 Bilder. Er geht mit seiner Mutter zum Einkaufen und erhält anschließend zwei Päckchen mit Tierbildern. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die beiden Päckchen nur Bilder enthalten, die der Junge bereits in seinem Sammelalbum hat.

    (3 BE)

  • Bei der Wintersportart Biathlon wird bei jeder Schießanlage auf fünf Scheiben geschossen. Ein Biathlet tritt bei einem Einzelrennen zu einer Schießeinlage an, bei der er auf jede Scheibe einen Schuss abgibt. Diese Schießeinlage wird modellhaft durch eine Bernoullikette mit der Länge 5 und der Trefferwahrscheinlichkeit \(p\) beschrieben.

    Geben Sie für die folgenden Ereignisse \(A\) und \(B\) jeweils einen Term an, der die Wahrscheinlichkeit des Ereignisses in Abhängigkeit von \(p\) beschreibt.

    \(A\): „Der Biathlet trifft bei genau vier Schüssen."

    \(B\): „Der Biathlet trifft nur bei den ersten beiden Schüssen."

    (3 BE)

  • In einer Urne befinden sich vier rote und sechs blaue Kugeln. Aus dieser wird achtmal eine Kugel zufällig gezogen, die Farbe notiert und die Kugel anschließend wieder zurückgelegt.

    Geben Sie einen Term an, mit dem die Wahrscheinlichkeit des Ereignisses „Es werden gleich viele rote und blaue Kugeln gezogen." berechnet werden kann. 

    (2 BE)

  • Gegeben ist eine Bernoullikette mit der Länge \(n\) und der Trefferwahrscheinlichkeit \(p\). Erklären Sie, dass für alle \(k \in \{0; 1; 2; \dots; n\}\) die Beziehung \(B(n; p; k) = B(n; 1 - p; n - k)\) gilt. 

    (2 BE)

  • Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit durch den Term \(0{,}2^{10} + (1 - 0{,}2)^{10}\) angegeben wird.

    (2 BE)

  • Ermitteln Sie, wie viele Haushalte das Unternehmen mindestens anschreiben müsste, damit mit einer Wahrscheinlichkeit von mehr als 99 % wenigstens ein angeschriebener Haushalt, der noch nicht über einen schnellen Internetanschluss verfügt, einen solchen einrichten lassen würde. Gehen Sie davon aus, dass sich jeder hundertste angeschriebene Haushalt, der noch nicht über einen schnellen Internetanschluss verfügt, dafür entscheidet, einen solchen einrichten zu lassen.

    (5 BE)

  • Ermitteln Sie, wie groß der Anteil der gelben Gummibärchen in der Produktion mindestens sein muss, damit in einer zufällig ausgewählten Tüte mit einer Wahrscheinlichkeit von mindestens 95 % mindestens ein gelbes Gummibärchen ist.

    (4 BE)

  • Geben Sie im Sachzusammenhang ein Ereignis an, dessen Wahrscheinlichkeit mit dem Term \(\displaystyle \sum \limits_{k\,=\,0}^{25}\binom{200}{k} \cdot 0{,}1^k \cdot (1 - 0{,}1)^{200 - k}\) berechnet werden kann.

    (3 BE) 

  • Folgende Tabelle gibt die Verteilung der Blutgruppen und der Rhesusfaktoren innerhalb der Bevölkerung Deutschlands wieder:

    Tabelle: Verteilung der Blutgruppen und Rhesusfaktoren

    In einem Krankenhaus spenden an einem Vormittag 25 Personen Blut. Im Folgenden soll angenommen werden, dass diese 25 Personen eine zufällige Auswahl aus der Bevölkerung darstellen. 

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass genau zehn der Spender die Blutgruppe \(A\) haben.

    (3 BE)

  • Folgende Tabelle gibt für die verschiedenen Empfänger von Spenderblut an, welches Spenderblut für sie jeweils geeignet ist:

    Tabelle: Eignung von Spenderblut für verschiedene Empfänger

    Für einen Patienten mit der Blutgruppe \(B\) und dem Rhesusfaktor \(Rh-\) wird Spenderblut benötigt. Bestimmen Sie, wie viel zufällig ausgewählte Personen mindestens Blut spenden müssten, damit man mit einer Wahrscheinlichkeit von mehr als 95 % mindestens eine für diesen Patienten geeignete Blutspende erhält.

    (5 BE)

  • Bei jeder Aufführung wird der Vorhang 15-mal geschlossen; dafür ist ein automatischer Mechanismus vorgesehen. Erfahrungsgemäß funktioniert der Mechanismus bei jedem Schließen des Vorhangs mit einer Wahrscheinlichkeit von 90 %. Nur dann, wenn der Mechanismus nicht funktioniert, wird der Vorhang von Hand zugezogen.

    Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(A\,\): "Bei einer Aufführung wird der Vorhang kein einziges Mal von Hand zugezogen."

    \(B\,\): "Bei einer Aufführung lässt sich der Vorhang zunächst viermal automatisch schließen, insgesamt wird der Vorhang jedoch genau zweimal von Hand zugezogen."

    (5 BE)

  • Bestimmen Sie, wie viele Kandidaten an der Quizshow mindestens teilnehmen müssten, damit mit einer Wahrscheinlichkeit von mehr als 90 % wenigstens ein Kandidat darunter ist, der keine Aufgabe aus dem Fachgebiet Mathematik lösen muss.

    (4 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass genau einer der zehn Kandidaten keine Aufgabe aus dem Fachgebiet Mathematik lösen muss.

    (2 BE)

  • Der Kandidat der Partei A spricht an einem Tag während seines Wahlkampfs 48 zufällig ausgewählte Wahlberechtigte an. Bestimmen Sie die Wahrscheinlichkeit dafür, dass sich darunter genau sechs Jungwähler befinden. 

    (3 BE)

  • Die Bürgerinitiative veranstaltet am viel besuchten Badesee der Gemeinde eine Unterschriftenaktion gegen die geplante Windkraftanlage.

    Berechnen Sie, wie hoch der Anteil \(p\) der Gegner der Windkraftanlage unter den Badegästen mindestens sein muss, damit sich unter zehn zufällig ausgewählten Badegästen mit einer Wahrscheinlichkeit von mindestens 99 % wenigstens ein Gegner der Windkraftanlage befindet. 

    (5 BE)

Seite 1 von 2