Ganzrationale Funktion

Teilaufgabe 1a

Abbildung 1 Aufgabe 1 Analysis 2 Mathematik Abitur Bayern 2018Abb. 1

Abbildung 1 zeigt den Graphen \(G_{f}\) einer ganzrationalen Funktion \(f\) drittens Grades mit Definitions­menge \(\mathbb R\). \(G_{f}\) schneidet die \(x\)-Achse bei \(x = 0\), \(x = 5\) und \(x = 10\) und verläuft durch den Punkt \((1|2)\).

Ermitteln Sie einen Funktionsterm von \(f\).

(zur Kontrolle: \(f(x) = \frac{1}{18} \cdot (x^{3} - 15x^{2} + 50x)\))

(4 BE)

Teilaufgabe 4b

Für jeden Wert von \(a\) besitzt der Graph von \(f_{a}\) genau zwei Extrempunkte. Ermitteln Sie denjenigen Wert von \(a\), für den der Graph der Funktion \(f_{a}\) an der Stelle \(x = 3\) einen Extrempunkt hat.

(3 BE)

Teilaufgabe 4a

Für jeden Wert von \(a\) mit \(a \in \mathbb R^{+}\) ist eine Funktion \(f_{a}\) durch \(f_{a}(x) = \dfrac{1}{a} \cdot x^{3} - x\) mit \(x \in \mathbb R\) gegeben.

Eine der beiden Abbildungen stellt einen Graphen von \(f_{a}\) dar. Geben Sie an, für welche Abbildung dies zutrifft. Begründen Sie Ihre Antwort.

Abbildung 1 Aufgabe 5a Analysis 1 Mathematik Abitur Bayern 2018 A
Abbildung 2 Analysis 1 Mathematik Abitur Bayern 2018 A

 

(2 BE)

Teilaufgabe 5b

Für jeden Wert von \(a\) besitzt der Graph von \(f_{a}\) genau zwei Extrempunkte. Ermitteln Sie denjenigen Wert von \(a\), für den der Graph der Funktion \(f_{a}\) an der Stelle \(x = 3\) einen Extrempunkt hat.

(3 BE)

Teilaufgabe 5a

Für jeden Wert von \(a\) mit \(a \in \mathbb R^{+}\) ist eine Funktion \(f_{a}\) durch \(f_{a}(x) = \dfrac{1}{a} \cdot x^{3} - x\) mit \(x \in \mathbb R\) gegeben.

Eine der beiden Abbildungen stellt einen Graphen von \(f_{a}\) dar. Geben Sie an, für welche Abbildung dies zutrifft. Begründen Sie Ihre Antwort.

Abbildung 1 Aufgabe 5a Analysis 1 Mathematik Abitur Bayern 2018 A
Abbildung 2 Analysis 1 Mathematik Abitur Bayern 2018 A

 

(2 BE)

Lösung - Aufgabe 4

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \dfrac{1}{20}x^{5} + \dfrac{1}{12}x^{4} - \dfrac{1}{3}x^{3}\).

 

Bestimmen Sie die Wendepunkte des Graphen \(G_{f}\) der Funktion \(f\) und geben Sie das Kümmungsverhalten von \(G_{f}\) an.

Aufgaben

Aufgabe 1

Berechnen Sie folgende Integrale bzw. die Integrationsgrenze \(a\) mit \(a \in \mathbb N\). Geben Sie exakte Werte an.

a) \(\displaystyle \int_{0}^{1} \frac{-6x^{2} + 6}{x^{3} - 3x + 3} dx\)

b) \(\displaystyle \int_{-a}^{3a} (3t - 2) dt = 4\)

 

c) \(\displaystyle \int_{1}^{\infty} \frac{3}{x^{2}} dx\)

d) \(\displaystyle \int_{4}^{8} \left( e^{-2x} -\sin\left(\frac{\pi}{4}x\right) +\frac{2}{x-2} \right) dx\)

 

Aufgabe 2

Geben sie jeweils eine Integrandenfunktion \(f(x)\) und \(g(x)\) an, sodass die folgenden Gleichungen erfüllt sind.

a) \(\displaystyle \int_{-a}^{+a} f(x) dx = 0; \; a \neq 0\)

b) \(\displaystyle \int_{-1}^{3} g(x) dx = 8\)

 

Aufgabe 3

Gegeben sind die jeweils in \(\mathbb R\) definierten Funktionenscharen \(f_{a} \colon x \mapsto x(a^{2} - x^{2})\) und \(g_{a} \colon x \mapsto x(x - a)^{2}\) mit \(a \in \mathbb R^{+}\).

 

a) Bestimmen Sie in Abhängigkeit des Parameters \(a\) den Flächeninhalt \(A(a)\) der Fläche, welche die Graphen der Funktionenscharen \(f\) und \(g\) begrenzen.

b) Für welchen Wert des Parameters \(a\) ergibt sich der Flächeninhalt 13,5 FE (Flächeneinheiten)?

 

Aufgabe 4

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \dfrac{1}{20}x^{5} + \dfrac{1}{12}x^{4} - \dfrac{1}{3}x^{3}\).

 

Bestimmen Sie die Wendepunkte des Graphen \(G_{f}\) der Funktion \(f\) und geben Sie das Kümmungsverhalten von \(G_{f}\) an.

 

Aufgabe 5

Abbildung zu Klausur Q12/1 001 Aufgabe 5

Die Abbildung zeigt den Graphen \(G_{f}\) einer in \(R\) definierten Funktion \(f\).

 

a) Skizzieren Sie den Graphen \(G_{F}\) der Integralfunktion \(F \colon x \mapsto \displaystyle \int_{0}^{x} f(t) dt\) in die Abbildung. Gehen Sie dabei insbesondere auf die Nullstellen und die Extremstelle von \(G_{f}\) sowie auf das Verhalten von \(G_{f}\) für \(x \to \pm \infty\) ein. Erläutern Sie Ihre Vorgehensweise.

b) „Jede Stammfunktion der abgebildeten Funktion \(f\) ist eine Integralfunktion." Nehmen Sie zu dieser Aussage begründend Stellung, indem Sie sich auf \(G_{F}\) beziehen.

Lösung - Aufgabe 3

Gegeben ist die in \(\mathbb R\) definierte  Funktionenschar \(f_{a}(x) = x^{3} - ax + 3\) mit \(a \in \mathbb R\). Die Kurvenschar der Funktionenschar \(f_{a}\) wird mit \(G_{f_{a}}\) bezeichnet.

 

Bestimmen Sie den Wert des Parameters \(a\) so, dass der zugehörige Graph der Kurvenschar \(G_{f_{a}}\)

a) zwei Extrempunkte

b) einen Terrassenpunkt

besitzt.

Aufgaben

Aufgabe 1

Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{8x}{x^{2} + 4}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

b) Bestimmen Sie den maximalen Definitionsbereich der Funktion \(f\) und ermitteln Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs. Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

c) Weisen Sie nach, dass der Graph \(G_{f}\) durch den Koordinatenursprung \(O(0|0)\) verläuft und berechnen Sie die Größe des Winkels, unter dem \(G_{f}\) die \(x\)-Achse schneidet.

(Teilergebnis: \(f'(x) = -\dfrac{8(x^{2} - 4)}{(x^{2} + 4)^{2}}\))

d) Bestimmen Sie die Lage und die Art der Extrempunkte von \(G_{f}\).

e) Zeichnen Sie den Graphen \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

 

Aufgabe 2

Der Graph \(G_{f}\) einer gebrochenrationalen Funktion \(f\) hat folgende Eigenschaften:

\(G_{f}\) hat genau die zwei Nullstellen \(x = 0\) und \(x = 4\).

\(G_{f}\) hat genau die zwei Polstellen mit Vorzeichenwechsel \(x = -1\) und \(x = 2\).

\(G_{f}\) hat eine waagrechte Asymptote mit der Gleichung \(y = 2\).

 

a) Geben Sie einen möglichen Funktionsterm der Funktion \(f\) an und skizzieren Sie den Graphen der Funktion \(f\).

b) „Der Funktionsterm \(f(x)\) ist durch die genannten Eigenschaften eindeutig bestimmt." Nehmen Sie zu dieser Aussage begründend Stellung.

 

Aufgabe 3

Gegeben ist die in \(\mathbb R\) definierte  Funktionenschar \(f_{a}(x) = x^{3} - ax + 3\) mit \(a \in \mathbb R\). Die Kurvenschar der Funktionenschar \(f_{a}\) wird mit \(G_{f_{a}}\) bezeichnet.

 

Bestimmen Sie den Wert des Parameters \(a\) so, dass der zugehörige Graph der Kurvenschar \(G_{f_{a}}\)

a) zwei Extrempunkte

b) einen Terrassenpunkt

besitzt.

 

Aufgabe 4

Abbildung zu Aufgabe 4 Klausur Q11/1-004

Nach der Einnahme eines Medikaments wird die Konzentration \(K\) des Medikaments im Blut eines Patienten gemessen.

Die Funktion \(K \colon t \mapsto \dfrac{100t}{t^{2} + 25}\) mit \(t \geq 0\) beschreibt näherungsweise den Verlauf \(K(t)\) der Konzentration des Medikaments in Milligramm pro Liter in Abhängigkeit von der Zeit \(t\) in Stunden (vgl. Abbildung).

 

a) Bestimmen Sie den Zeitpunkt nach der Einnahme des Medikaments, zu dem die Konzentration \(K\) des Medikaments im Blut des Patienten noch 10 % der maximalen Konzentration beträgt auf Minuten genau.

(Teilergebnis: \(K'(t) = -\dfrac{100(t^{2} - 25)}{(t^{2} + 25)^{2}}\))

b) Berechnen Sie die mittlere Änderungsrate der Konzentration \(K\) im Zeitintervall \([10;20]\) und interpretieren Sie das Ergebnis im Sachzusammenhang.

 

Aufgabe 5

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto f(x)\) mit

 

\[f(x) = \vert 2x - 4 \vert = \begin{cases} \begin{align*} 2x - 4 \; \text{falls} \; &x \geq 0 \\[0.8em] -(2x - 4) \; \text{falls} \; &x < 0 \end{align*} \end{cases}\]

 

Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Skizzieren Sie \(G_{f}\) in ein geeignetes Koordinatensystem und begründen Sie geometrisch, dass die Funktion \(f\) an der Stelle \(x = 2\) nicht differenzierbar ist.

b) Bestätigen Sie durch Rechnung, dass die Funktion \(f\) an der Stelle \(x = 2\) nicht differenzierbar ist.

Aufgaben

Aufgabe 1

Geben Sie eine gebrochenrationale Funktion \(f\) an, deren Graph die Asymptote mit der Gleichung \(y = 2x - 1\) sowie die Nullstelle \(x = 2\) besitzt.

 

Aufgabe 2

Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{4x + 4}{x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Geben Sie die maximale Definitionsmenge sowie die Nullstelle(n) und die Polstelle(n) der Funktion \(f\) an. Bestimmen Sie die Gleichungen aller Asymptoten des Graphen der Funktion \(f\).

b) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

c) Leiten Sie die Funktion \(f\) sowohl mit der Produkt- als auch der Quotientenregel ab.

(Zur Kontrolle: \(f'(x) = \dfrac{-4x - 8}{x^{3}}\))

d) Bestimmen Sie die Nullstelle(n) der Ableitungsfunktion und deuten Sie das Ergebnis geometrisch.

e) Ermitteln Sie die Gleichung der Tangente \(T\) an \(G_{f}\) an der Stelle \(x = 2\).

 

Aufgabe 3

a) Berechnen Sie die Ableitung folgender Funktionen mithilfe der Ableitungsregeln ohne anschließend zu vereinfachen.

 

α) \(f(x) = 3x^{4} - \dfrac{3}{x} + 6\)

β) \(g(x) = (2x - 3)(x^{2} - t)\)

γ) \(h(x) = \dfrac{3x - 5}{3 - x^{3}}\)

 

b) Bestimmen Sie eine Stammfunktion der Funktion \(f \colon x \mapsto 3x^{4} + \dfrac{3}{x^{3}} - 4\).

 

Aufgabe 4

Gegeben ist die Funktion \(f \colon x \mapsto 4x^{2} - 1\).

 

a) Bestimmen Sie die mittlere Änderungsrate auf dem Intervall \([1;3]\).

b) Bestimmen Sie \(f'(2)\) unter Verwendung des Differentialquotienten.

 

Aufgabe 5

Florian behauptet: „Sind die Ableitungen von zwei Funktionen gleich, so sind auch die Funktionen selbst gleich."

Nehmen Sie zu Florians Aussage begründend Stellung.

 

Aufgabe 6

Ordnen Sie die Graphen I bis VI den freien Feldern der Tabelle so zu, dass unter einem Funktionsgraphen jeweils der Graph seiner Ableitung zu sehen ist und beschriften Sie die Felder entsprechend. Begründen Sie Ihre Wahl für die erste Spalte.

Hinweis: Die Skalierung der Koordinatenachsen ist für alle abgebildeten Graphen dieselbe.

 

Funktionsgraph links oben der Tabelle zu Aufgabe 6    
  Funktionsgraph mittig der Tabelle zu Aufgabe 6   
    Funktionsgraph rechts unten der Tabelle zu Aufgabe 6 

 

Graphen I bis VI:

Graph I Graph II Graph III
Graph IV Graph V Graph VI