Ganzrationale Funktion

Teilaufgabe 5a

Gegeben ist die Funktion \(f\) mit \(f(x) = x^3 - 6x^2 + 11x - 6\) und \(x \in \mathbb R\).

Weisen Sie nach, dass der Wendepunkt des Graphen von \(f\) auf der Geraden mit der Gleichung \(y = x - 2\) liegt.

(3 BE)

Teilaufgabe 2a

Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f\), \(g\) und \(h\) mit \(f(x) = x^2 - x + 1\), \(g(x) = x^3 - x + 1\) und \(h(x) = x^4 + x^2 + 1\).

Abbildung 1 zeigt den Graphen einer der drei Funktionen. Geben Sie an, um welche Funktion es sich handelt. Begründen Sie, dass der Graph die anderen beiden Funktionen nicht darstellt.

Abbildung 1 zu Teilaufgabe 2 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2015Abb. 1

 

(3 BE)

Teilaufgabe 1b

Bestimmen Sie die Nullstellen von \(f\).

(2 BE)

Teilaufgabe 1a

Gegeben ist die Funktion \(f \colon x \mapsto \left(x^3 - 8 \right) \cdot (2 + \ln x)\) mit maximalem Definitionsbereich D.

Geben Sie D an.

(1 BE)

Teilaufgabe 3c

Der Verlauf des oberen Blattrands wird in der Nähe der Blattspitze durch das bisher verwendete Modell nicht genau genug dargestellt. Daher soll der obere Blattrand im Modell für \(-2 \leq x \leq 0\) nicht mehr durch \(G_h\), sondern durch den Graphen \(G_k\) einer in \(\mathbb R\) definierten ganzrationalen Funktion \(k\) dritten Grades beschrieben werden. Für die Funktion \(k\) werden die folgenden Bedingungen gewählt (\(k'\) und \(h'\) sind die Ableitungsfunktionen von \(k\) bzw. \(h\)):

\[\begin{align*} \sf{I} & \quad k(0) = h(0) \\[0.8em] \sf{II} & \quad k'(0) = h'(0) \\[0.8em] \sf{III} & \quad k(-2) = h(-2) \\[0.8em] \sf{IV} & \quad k'(-2) = 1{,}5 \end{align*}\]

Begründen Sie im Sachzusammenhang, dass die Wahl der Bedingungen I, II und III sinnvoll ist. Machen Sie plausibel, dass die Bedingung IV dazu führt, dass die Form des Blatts in der Nähe der Blattspitze im Vergleich zum ursprünglichen Modell genauer dargestellt wird.

(3 BE)

Teilaufgabe 4b

Geben Sie den Term einer in \(\mathbb R\) definierten Funktion \(f\) an, sodass die in \(\mathbb R\) definierte Integralfunktion \(\displaystyle F \colon x \mapsto \int_{-1}^x f(t)\,dt\) genau zwei Nullstellen besitzt. Geben Sie die Nullstellen von \(F\) an.

(3 BE)

Teilaufgabe 1b

Ein den oberen Rand des Kunstwerks genauer darstellendes Modell liefert der Graph der in \(\mathbb R\) definierten ganzrationalen Funktion \(q\) vierten Grades mit \(q(x) = -0{,}11x^4 - 0{,}81x^2 + 5\,\). Der Graph von \(q\) wird mit \(G_q\) bezeichnet.

Weisen Sie rechnerisch nach, dass \(G_q\) symmetrisch bezüglich der \(y\)-Achse ist, durch die Punkte \(A\) und \(B\) verläuft und genau einen Extrempunkt besitzt.

(7 BE)

Teilaufgabe 1c

Abbildung 2 zeigt die Graphen von \(p\) und \(q\).

Welcher der beiden dargestellten Graphen ist \(G_g\,\)? Begründen Sie Ihre Antwort.

Abbildung 2: Graph von p, Graph von qAbb. 2

(2 BE)

Teilaufgabe 1f

Die Gerade mit der Gleichung \(y = 1{,}1\) teilt im Modell den vom Kunstwerk eingenommenen Teil der Wand in zwei unterschiedlich gestaltete Bereiche. Beschreiben Sie, wie man mithilfe der Funktion \(q\) das Verhältnis der Flächeninhalte dieser beiden Bereiche näherungsweise bestimmen kann. Geben Sie dazu geeignete Ansätze an und kommentieren Sie diese.

(4 BE)

Teilaufgabe 1d

Im Intervall \(]0;2[\) gibt es eine Stelle \(x_0\), an der der Wert der Differenz \(d(x) = q(x) - p(x)\) maximal wird. Berechnen Sie \(x_0\) sowie den Wert der zugehörigen Differenz.

(5 BE)