Anzeige nach Tag: Gegenseitige Lage von Gerade und Ebene

Teilaufgabe a

In einem kartesischen Koordinatensystem sind die Ebene \(E \colon x_{1} + x_{3} = 2\), der Punkt \(A\left( 0|\sqrt{2}|2 \right)\) und die Gerade \(\displaystyle g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \begin{pmatrix} -1 \\ \sqrt{2} \\ 1 \end{pmatrix}\), \(\lambda \in \mathbb R\), gegeben.

Beschreiben Sie, welche besondere Lage die Ebene \(E\) im Koordinatensystem hat. Weisen Sie nach, dass die Ebene \(E\) die Gerade \(g\) enthält. Geben Sie die Koordinaten der Schnittpunkte von \(E\) mit der \(x_{1}\)-Achse und mit der \(x_{3}\)-Achse an und veranschaulichen Sie die Lage der Ebene \(E\) sowie den Verlauf der Geraden \(g\) in einem kartesischen Koordinatensystem (vgl. Abbildung).

Abbildung zu Teilaufgabe a Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2015

(6 BE)

Teilaufgabe b

Berechnen Sie die Größe des Steigungswinkels der Flugbahn von \(F_1\) gegen die Horizontale.

(4 BE) 

Teilaufgabe d

Durch das Fenster einfallendes Sonnenlicht wird im Zimmer durch parallele Geraden mit dem Richtungsvektor \(\overrightarrow v = \begin{pmatrix} -2 \\ -8 \\ -1 \end{pmatrix}\) repräsentiert. Eine dieser Geraden verläuft durch den Punkt \(G\) und schneidet die Seitenwand \(OPQR\) im Punkt \(S\). Berechnen Sie die Koordinaten von \(S\) sowie die Größe des Winkels, den diese Gerade mit der Seitenwand \(OPQR\) einschließt.

(6 BE)

Teilaufgabe f

Abbildung 2 zeigt ein quaderförmiges Möbelstück, das 40 cm hoch ist. Es steht mit seiner Rückseite flächenbündig an der Wand unter dem Fenster. Seine vordere Oberkante liegt im Modell auf der Geraden \(k \colon \enspace \overrightarrow X = \begin{pmatrix} 0 \\ 5{,}5 \\ 0{,}4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\), \(\lambda \in \mathbb R\,\).

Abbildung 2: quaderförmiges MöbelstückAbb. 2

Ermitteln Sie mithilfe von Abbildung 2 die Breite \(b\) des Möbelstücks möglichst genau.

Bestimmen Sie mithilfe der Gleichung der Geraden \(k\) die Tiefe \(t\) des Möbelstücks und erläutern Sie Ihr Vorgehen.

(4 BE)

Teilaufgabe e

Welche Lagebeziehung muss eine Gerade zur Ebene \(E\) haben, wenn für jeden Punkt \(P\) dieser Geraden die Pyramide \(ABCP\) das gleiche Volumen wie die Pyramide \(ABCS\) besitzen soll? Begründen Sie Ihre Antwort.

(3 BE)

Teilaufgabe d

Ein Hubschrauber überfliegt das Grundstück entlang einer Linie, die im Modell durch die Gerade

\[g\colon \enspace \overrightarrow X = \begin {pmatrix} -20 \\ 40 \\ 40 \end {pmatrix} + \lambda \cdot \begin {pmatrix} 4 \\ 5 \\ -3 \end {pmatrix}\,, \enspace \lambda \in \mathbb R \;,\]

beschrieben wird.

 

Weisen Sie nach, dass der Hubschrauber mit einem konstanten Abstand von 20 m zum Hang fliegt.

(3 BE)