Geometrie 1

Teilaufgabe h

Aus den vier Austrittsstellen fließen pro Sekunde insgesamt 80 mi Wasser in die Bronzeschale. Bestimmen Sie die Zeit in Sekunden, die vergeht, bis der anfangs leere Brunnen vollständig mit Wasser gefüllt ist.

(4 BE)

Teilaufgabe g

Untersuchen Sie, ob der höchste Punkt der Wasserfontäne höher liegt als der höchste Punkt des Brunnens.

(2 BE)

Teilaufgabe f

Auf der Oberfläche der Marmorkugel treten an vier Stellen Wasserfontänen aus. Eine dieser Austrittsstellen wird im Modell durch den Punkt \(L_{0}(1|1|6)\) beschrieben. Die zugehörige Fontäne wird modellhaft durch Punkte \(L_{t}\left(t + 1|t + 1|6{,}2 - 5 \cdot (t - 0{,}2)^{2}\right)\) mit geeigneten Werten \(t \in \mathbb R_{0}^{+}\) beschrieben.

Abbildung Teilaufgabe d Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2021

Der Punkt \(P\) liegt innerhalb des Dreiecks \(ABS\) und beschreibt im Modell die Stelle, an der die Fontäne auf die Bronzeschale trifft (vgl. Abbildung). Bestimmen Sie die Koordinaten von \(P\).

(4 BE)

Teilaufgabe e

Weisen Sie nach, dass der höchste Punkt des Brunnens ca. 64 cm über dem Erdboden liegt.

(2 BE)

Teilaufgabe d

Abbildung Teilaufgabe d Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2021

Ein auf einer Stange montierter Brunnen besteht aus einer Marmorkugel, die in einer Bronzeschale liegt. Die Marmorkugel berührt die vier Innenwände der Bronzeschale an jeweils genau einer Stelle. Die Bronzeschale wird im Modell durch die Seitenflächen der Pyramide \(ABCDS\) beschrieben, die Marmorkugel durch eine Kugel mit Mittelpunkt \(M(0|0|4)\) und Radius \(r\). Die \(x_{1}x_{2}\)-Ebene des Koordinatensystems stellt im Modell den horizontal verlaufenden Erdboden dar; eine Längeneinheit entspricht einem Dezimeter in der Realität.

Ermitteln Sie den Durchmesser der Marmorkugel auf Zentimeter genau.

(zur Kontrolle: \(r = \sqrt{6}\))

(4 BE)

Teilaufgabe c

Berechnen Sie das Volumen \(V\) der Pyramide \(ABCDS\).

(zur Kontrolle: \(V = 72\))

(2 BE)

Teilaufgabe b

Bestimmen Sie die Gleichung der Ebene \(F\) in Koordinatenform.

(zur Kontrolle: \(F \colon x_{1} + x_{2} - 2x_{3} + 2 = 0\))

(3 BE)

Teilaufgabe a

Die Punkte \(A(6|0|4)\), \(B(0|6|4)\), \(C(-6|0|4)\) und \(D\) liegen in der Ebene \(E\) und bilden die Eckpunkte der quadratischen Grundfläche einer Pyramide \(ABCDS\) mit der Spitze \(S(0|0|1)\). \(A\), \(B\) und \(S\) liegen in der Ebene \(F\).

Zeigen Sie rechnerisch, dass das Dreieck \(ABS\) gleichschenklig ist. Geben Sie die Koordinaten des Punkts \(D\) an und beschreiben Sie die besondere Lage der Ebene \(E\) im Koordinatensystem.

(4 BE)