Gerade

Teilaufgabe 2c

Zeichnen Sie den Graphen von \(E\) in Abbildung 2 ein. Bestimmen Sie mithilfe der so entstehenden Darstellung den Bereich, in dem die verkaufte Menge der Flüssigkeit liegen muss, damit das Unternehmen einen Gewinn erzielt.

(3 BE)

Teilaufgabe 3d

Der Tunnel soll durch einen Berg führen. Im betrachteten Querschnitt wird das Profil des Berghangs über dem Tunnel durch eine Gerade \(g\) mit der Gleichung \(y = -\frac{4}{3}x + 12\) modelliert.

Zeigen Sie, dass die Tangente \(t\) an den Graphen von \(f\) im Punkt \(R(4|f(4))\) parallel zu \(g\) verläuft. Zeichnen Sie \(g\) und \(t\) in das Koordinatensystem aus Aufgabe 3a ein.

(4 BE)

Teilaufgabe 1a

Die Gerade \(g\) verläuft durch die Punkte \(A\,(0|1|2)\) und \(B\,(2|5|6)\).

Zeigen Sie, dass die Punkte \(A\) und \(B\) den Abstand 6 haben.

Die Punkte \(C\) und \(D\) liegen auf \(g\) und haben von \(A\) jeweils den Abstand 12. Bestimmen Sie die Koordinaten von \(C\) und \(D\).

(3 BE)

Teilaufgabe 2a

Gegeben ist die Funktion \(f\) mit \(f(x) = x^3 - 6x^2 + 11x - 6\) und \(x \in \mathbb R\).

Weisen Sie nach, dass der Wendepunkt des Graphen von \(f\) auf der Geraden mit der Gleichung \(y = x - 2\) liegt.

(3 BE)

Teilaufgabe d

Sonnenlicht, das an einem Sommertag zu einem bestimmten Zeitpunkt \(t_{0}\) auf die Sonnenuhr einfällt, wird im Modell durch parallele Geraden mit dem Richtungsvektor \(\overrightarrow{u} = \begin{pmatrix} 6 \\ 6 \\ -13 \end{pmatrix}\) dargestellt.

Weisen Sie nach, dass der Schatten der im Modell durch den Punkt \(S\) dargestellten Spitze des Polstabs außerhalb der rechteckigen Grundplatte liegt.

(6 BE)

Teilaufgabe b

Die \(x_{1}x_{2}\)-Ebene beschreibt modellhaft eine horizontale Fläche, auf der eine Achterbahn errichtet wurde. Ein gerader Abschnitt der Bahn beginnt im Modell im Punkt \(A\) und verläuft entlang der Geraden \(g\). Der Vektor \(\displaystyle \begin{pmatrix} -1 \\ \sqrt{2} \\ 1 \end{pmatrix}\) beschreibt die Fahrtrichtung auf diesem Abschnitt.

Berechnen Sie im Modell die Größe des Winkels, unter dem dieser Abschnitt der Achterbahn gegenüber der Horizontalen ansteigt.

(3 BE)

Teilaufgabe 1c

Die Gerade \(g\) schneidet \(G_{f}\) in den Punkten \(W\) und \((2|0)\).

Zeichnen Sie unter Berücksichtigung der bisherigen Ergebnisse \(G_{f}\) sowie die Gerade \(g\) in ein Koordinatensystem ein. Geben Sie die Gleichung der Geraden \(g\) an.

(4 BE)

Teilaufgabe 1a

Die Gerade \(g\) verläuft durch die Punkte \(A\,(0|1|2)\) und \(B\,(2|5|6)\).

Zeigen Sie, dass die Punkte \(A\) und \(B\) den Abstand 6 haben.

Die Punkte \(C\) und \(D\) liegen auf \(g\) und haben von \(A\) jeweils den Abstand 12. Bestimmen Sie die Koordinaten von \(C\) und \(D\).

(3 BE)