Grenzwertbetrachtung

Teilaufgabe 2a

Betrachtet wird die in \(\mathbb R\) definierte Funktion \(g \colon x \mapsto \dfrac{e^{x}}{e^{x} + 1}\). Ihr Graph wird mit \(G_{g}\) bezeichnet.

Zeigen Sie, dass \(g\) streng monoton zunehmen ist und die Wertemenge \(]0;1[\) besitzt.

(zur Kontrolle: \(g'(x) = \dfrac{e^{x}}{(e^{x} + 1)^{2}}\))

(5 BE)

Teilaufgabe 1e

Skizzieren Sie in die Abbildung den Graphen von \(F\). Berücksichtigen Sie dabei insbesondere, dass \(F(1) \approx 3{,}5\) und \(\lim \limits_{x\,\to\,+\infty} F(x) = 2\) gilt.

(3 BE)

Teilaufgabe 1a

Gegeben ist die in \(\mathbb R \backslash \{-2;2\}\) definierte Funktion \(f \colon x \mapsto \dfrac{6x}{x^{2} - 4}\). Der Graph von \(f\) wird mit \(G_{f}\) bezeichnet und ist symmetrisch bezüglich des Koordinatenursprungs.

Geben Sie die Gleichungen aller senkrechter Asymptoten von \(G_{f}\) an. Begründen Sie, dass \(G_{f}\) die \(x\)-Achse als waagrechte Asymptote besitzt.

(3 BE)

Teilaufgabe 2b

Gegeben ist die in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto \ln{\left( \dfrac{1}{x^{2} + 1} \right)}\). Begründen Sie, dass die Wertemenge von \(h\) das Intervall \(]-\infty;0]\) ist.

(3 BE)

Teilaufgabe 2f

Um die zeitliche Entwicklung des Flächeninhalts eines Algenteppichs am Nordufer des Sees zu beschreiben, wird im Term \(A(x)\) die im Exponenten zur Basis e enthaltene Zahl -0,2 durch eine kleinere Zahl ersetzt.

Vergleichen Sie den Algenteppich am Nordufer mit dem am Südufer

● hinsichtlich der durch \(A(0)\) und \(\lim \limits_{x\,\to\,+\infty} A(x)\) beschriebenen Eigenschaften (vgl. Aufgabe 2a).

● hinsichtlich der momentanen Änderungsrate des Flächeninhalts zu Beobachtungsbeginn (vgl. Aufgabe 2c).

Skizzieren Sie - ausgehend von diesem Vergleich - in der Abbildung 2 den Graphen einer Funktion, die eine mögliche zeitliche Entwicklung des Flächeninhalts des Algenteppichs am Nordufer beschreibt.

(5 BE)

Teilaufgabe 2a

Die in \(\mathbb R_{0}^{+}\) definierte Funktion \(A \colon x \mapsto \dfrac{8}{f(x)}\) beschreibt modellhaft die zeitliche Entwicklung des Flächeninhalts eines Algenteppichs am Südufer eines Sees. Dabei ist \(x\) die seit Beobachtungsbeginn vergangene Zeit in Tagen und \(A(x)\) der Flächeninhalt in Quadratmetern.

Bestimmen Sie \(A(0)\) sowie \(\lim \limits_{x\,\to\,+\infty} A(x)\) und geben Sie jeweils die Bedeutung des Ergebnisses im Sachzusammenhang an. Begründen Sie mithilfe des Monotonieverhaltens der Funktion \(\mathbf{f}\), dass der Flächeninhalt des Algenteppichs im Laufe der Zeit ständig zunimmt.

(5 BE)

Teilaufgabe 1a

Gegeben ist die Funktion \(f \colon x \mapsto 1 + 7e^{-0{,}2x}\) mit Definitionsbereich \(\mathbb R_{0}^{+}\); die Abbildung 1 zeigt den Graphen \(G_{f}\).

Begründen Sie, dass die Gerade mit der Gleichung \(y = 1\) waagrechte Asymptote von \(G_{f}\) ist.
Zeigen Sie rechnerisch, dass \(f\) streng monoton abnehmend ist.

Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

(3 BE)

Teilaufgabe 1a

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \dfrac{x^{2} - 1}{x^{2} + 1}\); die Abbildung 1 zeigt ihren Graphen \(G_{f}\).

Abbildung 1 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2020

Bestätigen Sie rechnerisch, dass \(G_{f}\) symmetrisch bezüglich der \(y\)-Achse ist, und untersuchen Sie anhand des Funktionsterms das Verhalten von \(f\) für \(x \to +\infty\). Bestimmen Sie diejenigen \(x\)-Werte, für die \(f(x) = 0{,}96\) gilt.

(5 BE)

Teilaufgabe 3a

Gegeben ist die in \(\mathbb R\) definierte Funktion \(k \colon x \mapsto \dfrac{-x^{2} + 2x}{2x^{2} + 4}\). Ihr Graph wird mit \(G_{k}\) bezeichnet.

Geben Sie die Nullstellen von \(k\) an und begründen Sie anhand des Funktionsterms, dass \(G_{k}\) die Gerade mit der Gleichung \(y = -0{,}5\) als waagrechte Asymptote besitzt.

(3 BE)

Teilaufgabe k

Bei Dauerinfusionen dieses Medikaments muss die Wirkstoffkonzentration spätestens 60 Minuten nach Beginn der Infusion dauerhaft größer als 0,75\(\frac{\sf{mg}}{\sf{l}}\) sein und stets mindestens 25 % unter der gesundheitsschädlichen Grenze von 2\(\frac{\sf{mg}}{\sf{l}}\) liegen. Ermitteln Sie \(\lim \limits_{x\,\to\,+\infty} k(x)\) und beurteilen Sie beispielsweise unter Verwendung der bisherigen Ergebnisse, ob gemäß der Modellierung diese beiden Bedingungen erfüllt sind.

(5 BE)