Hauptsatz der Differential und Integralrechnung

  • Aufgabe 1

    Berechnen Sie folgende Integrale bzw. die Integrationsgrenze \(a\) mit \(a \in \mathbb N\). Geben Sie exakte Werte an.

    a) \(\displaystyle \int_{0}^{1} \frac{-6x^{2} + 6}{x^{3} - 3x + 3} dx\)

    b) \(\displaystyle \int_{-a}^{3a} (3t - 2) dt = 4\)

     

    c) \(\displaystyle \int_{1}^{\infty} \frac{3}{x^{2}} dx\)

    d) \(\displaystyle \int_{4}^{8} \left( e^{-2x} -\sin\left(\frac{\pi}{4}x\right) +\frac{2}{x-2} \right) dx\)

     

    Aufgabe 2

    Geben sie jeweils eine Integrandenfunktion \(f(x)\) und \(g(x)\) an, sodass die folgenden Gleichungen erfüllt sind.

    a) \(\displaystyle \int_{-a}^{+a} f(x) dx = 0; \; a \neq 0\)

    b) \(\displaystyle \int_{-1}^{3} g(x) dx = 8\)

     

    Aufgabe 3

    Gegeben sind die jeweils in \(\mathbb R\) definierten Funktionenscharen \(f_{a} \colon x \mapsto x(a^{2} - x^{2})\) und \(g_{a} \colon x \mapsto x(x - a)^{2}\) mit \(a \in \mathbb R^{+}\).

     

    a) Bestimmen Sie in Abhängigkeit des Parameters \(a\) den Flächeninhalt \(A(a)\) der Fläche, welche die Graphen der Funktionenscharen \(f\) und \(g\) begrenzen.

    b) Für welchen Wert des Parameters \(a\) ergibt sich der Flächeninhalt 13,5 FE (Flächeneinheiten)?

     

    Aufgabe 4

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \dfrac{1}{20}x^{5} + \dfrac{1}{12}x^{4} - \dfrac{1}{3}x^{3}\).

     

    Bestimmen Sie die Wendepunkte des Graphen \(G_{f}\) der Funktion \(f\) und geben Sie das Kümmungsverhalten von \(G_{f}\) an.

     

    Aufgabe 5

    Abbildung zu Klausur Q12/1 001 Aufgabe 5

    Die Abbildung zeigt den Graphen \(G_{f}\) einer in \(R\) definierten Funktion \(f\).

     

    a) Skizzieren Sie den Graphen \(G_{F}\) der Integralfunktion \(F \colon x \mapsto \displaystyle \int_{0}^{x} f(t) dt\) in die Abbildung. Gehen Sie dabei insbesondere auf die Nullstellen und die Extremstelle von \(G_{f}\) sowie auf das Verhalten von \(G_{f}\) für \(x \to \pm \infty\) ein. Erläutern Sie Ihre Vorgehensweise.

    b) „Jede Stammfunktion der abgebildeten Funktion \(f\) ist eine Integralfunktion." Nehmen Sie zu dieser Aussage begründend Stellung, indem Sie sich auf \(G_{F}\) beziehen.

  • Abbildung zu Klausur Q12/1 001 Aufgabe 5

    Die Abbildung zeigt den Graphen \(G_{f}\) einer in \(R\) definierten Funktion \(f\).

     

    a) Skizzieren Sie den Graphen \(G_{F}\) der Integralfunktion \(F \colon x \mapsto \displaystyle \int_{0}^{x} f(t) dt\) in die Abbildung. Gehen Sie dabei insbesondere auf die Nullstellen und die Extremstelle von \(G_{f}\) sowie auf das Verhalten von \(G_{f}\) für \(x \to \pm \infty\) ein. Erläutern Sie Ihre Vorgehensweise.

    b) „Jede Stammfunktion der abgebildeten Funktion \(f\) ist eine Integralfunktion." Nehmen Sie zu dieser Aussage begründend Stellung, indem Sie sich auf \(G_{F}\) beziehen.

  • Aufgabe 1

    Berechnen Sie jeweils die Menge aller Stammfunktionen folgender Funktionen:

    a) \(f(x) = 2\sqrt{3 - 2x}\)

    b) \(g(x) = \ln{\left( x^{2} \right)}; \; x \in \mathbb R^{+}\)

    c) \(h(x) = \dfrac{x}{2} \cdot e^{3x^{2} + 4}\)

     

    Aufgabe 2

    Abbildung 1 Klausur Q12/1-004 Aufgabe 2

    Abbildung 2 Klausur Q12/1-004 Aufgabe 2

    Abbildung 3 Klausur Q12/1-004 Aufgabe 2

    Abbildung 4 Klausur Q12/1-004 Aufgabe 2

    Die Abbildungen zeigen den Graphen \(G_{f}\) einer in \(\mathbb R\) definierten und stetigen Funktion \(f\) sowie die Graphen A, B und C.

    Entscheiden Sie, welcher der Graphen A, B oder C den Graphen der Integralfunktion \(\displaystyle I_{0} \colon x \mapsto \int_{0}^{x} f(t) dt\) darstellt, indem Sie begründen weshalb die beiden anderen Graphen nicht in Frage kommen. 

     

    Aufgabe 3

    Der Graph der Funktion \(f \colon x \mapsto \ln{x}\) und die Normale \(N\) im Punkt \(P(e|f(e))\) schließen im ersten Quadranten mit den Koordinatenachsen ein Flächenstück mit dem Flächeninhalt \(A\) ein.

    a) Skizzieren Sie den Graphen \(G_{f}\) der Funktion \(f\) sowie die Normale \(N\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\).

    b) Berechnen Sie den Flächeninhalt \(A\). Rechnen Sie mit exakten Werten.

     

    Aufgabe 4

    Ein Unternehmen stellt Tonerkassetten für Laserdrucker her. Eine Tonerkassette vom Typ XL300 kostet in der Herstellung 40 Euro. Aus laufender Qualitätskontrolle ist bekannt, dass 4 % aller Tonerkassetten vom Typ XL300 defekt sind. Im Falle einer defekten Tonerkassette bekommt ein Kunde diese kostenlos ersetzt. Das Unternehmen möchte pro verkaufter Tonerkassette vom Typ XL300 einen Gewinn in Höhe von 10 Euro erzielen.

    Zu welchem Preis muss das Unternehmen eine Tonerkassette vom Typ XL300 anbieten?

     

    Aufgabe 5

    Ein Laplace-Tetraeder (dreiseitige Pyramide mit vier kongruenten gleichseitigen Dreiecken) ist auf seinen vier Flächen mit je einer der Ziffern 1 bis 4 beschriftet. Es wird folgendes Spiel gespielt:

    Ein Spieler zahlt einen Einsatz in Höhe von 1 Euro. Dann setzt er auf eine der Ziffern 1, 2, 3 oder 4 und wirft das Tetraeder anschließend dreimal. Gewertet wird die Ziffer der Fläche, auf der das Tetraeder zu liegen kommt.

    Erzielt der Spieler bei keinem Wurf die gesetzte Ziffer, ist der Einsatz verloren.

    Erzielt der Spieler einmal die gesetzte Ziffer, erhält er den Einsatz zurück.

    Erzielt der Spieler zweimal die gesetzte Ziffer, erhält er den doppelten Einsatz zurück.

    Erzielt der Spieler dreimal die gesetzte Ziffer, erhält er den dreifachen Einsatz zurück.

    Die Zufallsgröße \(G\) beschreibt den Gewinn eines Spielers pro Spiel in Euro.

    a) Ermitteln Sie die Wahrscheinlichkeitsverteilung der Zufallsgröße \(G\).

    b) Berechnen Sie den Erwartungswert der Zufallsgröße \(G\) und interpretieren Sie das Ergebnis im Sachzusammenhang.

  • Abbildung 1 Klausur Q12/1-004 Aufgabe 2 - Graph von f

    Abbildung 2 Klausur Q12/1-004 Aufgabe 2 - Graph A

    Abbildung 3 Klausur Q12/1-004 Aufgabe 2 - Graph B

    Abbildung 4 Klausur Q12/1-004 Aufgabe 2 - Graph C

    Die Abbildungen zeigen den Graphen \(G_{f}\) einer in \(\mathbb R\) definierten und stetigen Funktion \(f\) sowie die Graphen A, B und C.

    Entscheiden Sie, welcher der Graphen A, B oder C den Graphen der Integralfunktion \(\displaystyle I_{0} \colon x \mapsto \int_{0}^{x} f(t) dt\) darstellt, indem Sie begründen weshalb die beiden anderen Graphen nicht in Frage kommen. 

  • Betrachtet wird nun die in \(\mathbb R\) definierte Funktion \(\displaystyle F\,\colon\,x\mapsto \int_{a}^{x}f(t)\,dt\).

    Geben Sie an, welche besonderen Eigenschaften der Graph von \(F\) im Punkt \((a|F(a))\) hat; begründen Sie jeweils Ihre Antwort.

    (4 BE)

  • Zeigen Sie, dass die in \(\mathbb R\) definierte Funktion \(F\) mit \(F(x) = x^2 \cdot e^x\) eine Stammfunktion von \(f\) ist. Geben eine Gleichung einer weiteren Stammfunktion \(G\) von \(f\) an, für die \(G(1) = 2e\) gilt.

    (3 BE)

  • Zeigen Sie, dass die in \(\mathbb R\) definierte Funktion \(F\) mit \(F(x) = x^2 \cdot e^x\) eine Stammfunktion von \(f\) ist. Geben eine Gleichung einer weiteren Stammfunktion \(G\) von \(f\) an, für die \(G(1) = 2e\) gilt.

    (3 BE)

  • Gegeben ist ferner die in \(D_{h}\) definierte Integralfunktion \(\displaystyle H_{0} \colon x \mapsto \int_{0}^{x} h(t) \,dt\).

    Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr sind:

    α) Der Graph von \(H_{0}\) ist streng monoton steigend.

    β) Der Graph von \(H_{0}\) ist rechtsgekrümmt.

    (4 BE)

  • Geben Sie die Nullstelle von \(H_{0}\) an und bestimmen Sie näherungsweise mithilfe von Abbildung 2 die Funktionswerte \(H_{0}(-0{,}5)\) sowie \(H_{0}(3)\). Skizzieren Sie in Abbildung 2 den Graphen von \(H_{0}\) im Bereich \(-0{,}5 \leq x \leq 3\).

    (6 BE)

  • Zu Beginn eines Ausatemvorgangs befinden sich 3,5 Liter Luft in der Lunge der Testperson. Skizzieren Sie auf der Grundlage des Modells unter Berücksichtigung des Ergebnisses aus Aufgabe 3c in einem Koordinatensystem für \(0 \leq t \leq 8\) den Graphen einer Funktion, die den zeitlichen Verlauf des Luftvolumens in der Lunge der Testperson beschreibt.

    (3 BE)

  • Betrachtet wird nun die Integralfunktion \(\displaystyle F \colon x \mapsto \int_{0}^{x} f(t)\,dt\) mit Definitionsbereich \(D_{F} = [-5;5]\).

    Zeigen Sie mithilfe einer geometrischen Überlegung, dass \(F(5) = \frac{25}{4}\pi\) gilt.

    Einer der Graphen A, B und C ist der Graph von \(F\). Entscheiden Sie, welcher dies ist, und begründen Sie Ihre Entscheidung, indem Sie erklären, warum die beiden anderen Graphen nicht infrage kommen.

    Abbildung links zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Abbildung Mitte zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Abbildung rechts zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

     

    (5 BE)

  • Betrachtet wird nun die Integralfunktion \(F_{0}\) mit \(F_{0}(x) = \displaystyle \int_{0}^{x} f(t) dt\) und \(x \in \mathbb R\).

    Begründen Sie, dass \(F_{0}\) mit der betrachteten Stammfunktion \(F\) von \(f\) übereinstimmt. Interpretieren Sie geometrisch den Wert \(F_{0}(2) \approx 0{,}234\) mithilfe von in Abbildung 1 geeignet zu markierenden Flächenstücken.

    (4 BE)

  • Die Abbildung 2 zeigt den Graphen \(G_{f}\) einer in \([0{,}8; +\infty[\) definierten Funktion f.

    Abbildung 2 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2020

    Betrachtet wird zudem die in \([0{,}8; +\infty[\) definierte Integralfunktion \(\displaystyle J \colon x \mapsto \int_{2}^{x} f(t) dt\).

    Begründen Sie mithilfe von Abbildung 2, dass \(J(1) \approx -1\) gilt, und geben Sie einen Näherungswert für den Funktionswert \(J(4{,}5)\) an. Skizzieren Sie den Graphen von \(J\) in der Abbildung 2.

    (5 BE)

  • Nun wird die in \(\mathbb R\) definierte Integralfunktion \(\displaystyle F \colon x \mapsto \int_{0}^{x}f(t)dt\) betrachtet; ihr Graph wird mit \(G_{F}\) bezeichnet.

    Begründen Sie, dass \(F\) in \(x = 0\) eine Nullstelle hat, und machen Sie mithilfe des Verlaufs von \(\mathbf{G_{f}}\) plausibel, dass im Intervall \([1;3]\) eine weitere Nullstelle von \(F\) liegt.
    Geben Sie an, welche besondere Eigenschaft \(G_{F}\) im Punkt \((-1|F(-1))\) hat, und begründen Sie Ihre Angabe.

    (5 BE)

  • Berechnen Sie das arithmetische Mittel der beiden in den Aufgaben 2b und 2c berechneten Näherungswerte. Skizzieren Sie den Graphen von \(F\) für \(0 \leq x \leq 3\) unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1

    (4 BE)

  • Zeigen Sie, dass \(F : x \mapsto \frac{1}{4}x^2 \cdot (2\ln x - 1)\) mit Definitionsmenge \(\mathbb R^+\) eine Stammfunktion der in \(\mathbb R^+\) definierten Funktion \(f : x \mapsto x \cdot \ln x\) ist. Bestimmen Sie den Term derjenigen Stammfunktion von \(f\), die in \(x = 1\) eine Nullstelle hat.

    (5 BE)

  • Skizzieren Sie den Graphen von \(F\) in Abbildung 1.

    (2 BE)

  • Abbildung 1 zeigt den Graphen \(G_f\) einer in \(\mathbb R\) definierten Funktion \(f\).

    Skizzieren Sie in Abbildung 1 den Graphen der in \(\mathbb R\) definierten Integralfunktion \(\displaystyle F \colon x \mapsto \int_1^x f(t)\,dt\). Berücksichtigen Sie dabei mit jeweils angemessener Genauigkeit insbesondere die Nullstellen und Extremstellen von \(F\) sowie \(F(0)\).

    Abbildung 1Abb. 1

    (6 BE)