Integralfunktion

Teilaufgabe 3b

Betrachtet wird nun die Integralfunktion \(\displaystyle F \colon x \mapsto \int_{0}^{x} f(t)\,dt\) mit Definitionsbereich \(D_{F} = [-5;5]\).

Zeigen Sie mithilfe einer geometrischen Überlegung, dass \(F(5) = \frac{25}{4}\pi\) gilt.

Einer der Graphen A, B und C ist der Graph von \(F\). Entscheiden Sie, welcher dies ist, und begründen Sie Ihre Entscheidung, indem Sie erklären, warum die beiden anderen Graphen nicht infrage kommen.

 Abbildung links zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

Abbildung Mitte zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

Abbildung rechts zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

(5 BE)

Teilaufgabe 1h

Die als Kurvenlänge \(L_{a;b}\) bezeichnete Länge des Funktionsgraphen von \(f\) zwischen den Punkten \((a|f(a))\) und \((b|f(b))\) mit \(a < b\) lässt sich mithilfe der Formel \(\displaystyle L_{a;b} = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} \, dx\) berechnen.

Bestimmen Sie mithilfe der Beziehung aus Aufgabe 1g die Kurvenlänge \(L_{0;b}\) des Graphen von \(f\) zwischen den Punkten \((0|f(0))\) und \((b|f(b))\) mit \(b > 0\).

(Ergebnis: \(L_{0;b} = e^{\frac{1}{2}b} - e^{-\frac{1}{2}b}\))

(4 BE)

Teilaufgabe 3c

Zeigen Sie, dass \(\displaystyle F(b) = \int_{3}^{b} f(x) \, dx\) mit \(b \in \mathbb R\) gilt.

(2 BE)

Teilaufgabe 5c

Zeigen Sie, dass \(\displaystyle F(b) = \int_{3}^{b} f(x) \, dx\) mit \(b \in \mathbb R\) gilt.

(2 BE)

Teilaufgabe 3d

Zu Beginn eines Ausatemvorgangs befinden sich 3,5 Liter Luft in der Lunge der Testperson. Skizzieren Sie auf der Grundlage des Modells unter Berücksichtigung des Ergebnisses aus Aufgabe 3c in einem Koordinatensystem für \(0 \leq t \leq 8\) den Graphen einer Funktion, die den zeitlichen Verlauf des Luftvolumens in der Lunge der Testperson beschreibt.

(3 BE)

Teilaufgabe 2b

Gegeben ist ferner die in \(D_{h}\) definierte Integralfunktion \(\displaystyle H_{0} \colon x \mapsto \int_{0}^{x} h(t) \,dt\).

Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr sind:

α) Der Graph von \(H_{0}\) ist streng monoton steigend.

β) Der Graph von \(H_{0}\) ist rechtsgekrümmt.

(4 BE)

Teilaufgabe 1f

Betrachtet wird nun die in \(\mathbb R\) definierte Funktion \(\displaystyle F\,\colon\,x\mapsto \int_{a}^{x}f(t)\,dt\).

Geben Sie an, welche besonderen Eigenschaften der Graph von \(F\) im Punkt \((a|F(a))\) hat; begründen Sie jeweils Ihre Antwort.

(4 BE) 

Teilaufgabe 1g

Geben Sie den Zusammenhang zwischen der Funktion \(F\) und dem Ergebnis der Aufgabe 1e an.

(1 BE) 

Teilaufgabe 4b

Skizzieren Sie den Graphen von \(F\) in Abbildung 1.

(2 BE)