Anzeige nach Tag: Kombinatorik

Teilaufgabe 2a

In einem Parkhaus befinden sich insgesamt 100 Parkplätze.

Im Parkhaus sind 20 Parkplätze frei; vier Autofahrer suchen jeweils einen Parkplatz. Formulieren Sie in diesem Sachzusammenhang zu den folgenden Termen jeweils eine Aufgabenstellung, deren Lösung sich durch den Term berechnen lässt.

\[\sf{α)} \; 20 \cdot 19 \cdot 18 \cdot 17 \qquad \qquad \sf{β)} \; \binom{20}{4}\]

(3 BE)

Teilaufgabe 1d

Das Glücksrad wird viermal gedreht und die Abfolge der Farben als Ergebnis notiert. Bestimmen Sie die Anzahl der möglichen Ergebnisse, in denen die Farbe Blau nicht vorkommt.

(2 BE)

Teilaufgabe 2a

Ein Moderator lädt zu einer Talkshow drei Politiker, eine Journalistin und zwei Mitglieder einer Bürgerinitiative ein. Für die Diskussionsrunde ist eine halbkreisförmige Sitzordnung vorgesehen, bei der nach den Personen unterschieden wird und der Moderator den mittleren Platz einnimmt.

Geben Sie einen Term an, mit dem die Anzahl der möglichen Sitzordnungen berechnet werden kann, wenn keine weiteren Einschränkungen berücksichtigt werden.

(1 BE)

Teilaufgabe 2b

Der Sender hat festgestellt, dass unmittelbar neben dem Moderator auf einer Seite die Journalistin und auf der anderen Seite einer der Politiker sitzen soll. Berechnen Sie unter Berücksichtigung dieser weiteren Einschränkung die Anzahl der möglichen Sitzordnungen. 

(4 BE)

Teilaufgabe 1a

In Urne A befinden sich zwei rote und drei weiße Kugeln. Urne B enthält drei rote und zwei weiße Kugeln. Betrachtet wird folgendes Zufallsexperiment:

Aus Urne A wird eine Kugel zufällig entnommen und in Urne B gelegt; danach wird aus Urne B eine Kugel zufällig entnommen und in Urne A gelegt.

Geben Sie alle Möglichkeiten für den Inhalt der Urne A nach der Durchführung des Zufallsexperiments an.

(2 BE)

Teilaufgabe 1a

In Urne A befinden sich zwei rote und drei weiße Kugeln. Urne B enthält drei rote und zwei weiße Kugeln. Betrachtet wird folgendes Zufallsexperiment:

Aus Urne A wird eine Kugel zufällig entnommen und in Urne B gelegt; danach wird aus Urne B eine Kugel zufällig entnommen und in Urne A gelegt.

Geben Sie alle Möglichkeiten für den Inhalt der Urne A nach der Durchführung des Zufallsexperiments an.

(2 BE)

Teilaufgabe 3

Vor einer Schule stehen zehn Fahrräder nebeneinander; zwei davon sind Mountainbikes. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die beiden Mountainbikes unmittelbar nebeneinander stehen, wenn die Anordnung der Fahrräder zufällig erfolgte.

(3 BE) 

Teilaufgabe 3

Der Kurs Theater und Film eines Gymnasiums führt die Bühnenversion des Romans auf.

Für die Premiere wird die Aula der Schule bestuhlt; in der ersten Reihe werden acht Plätze für Ehrengäste reserviert. Bestimmen Sie die Anzahl der Möglichkeiten, die die fünf erschienenen Ehrengäste haben, sich auf die reservierten Plätze zu verteilen, wenn

α) die Personen nicht unterschieden werden;

β) die Personen unterschieden werden.

Nennen Sie im Sachzusammenhang einen möglichen Grund dafür, dass die möglichen Anordnungen der Ehrengäste auf den reservierten Plätzen nicht gleichwahrscheinlich sind - unabhängig davon, ob die Personen unterschieden werden oder nicht

(4 BE)

Teilaufgabe 2b

Zehn Besucher des Gemeindefests drehen nacheinander jeweils einmal das Glücksrad. Geben Sie zu jedem der folgenden Ereignisse einen Term an, mit dem sich die Wahrscheinlichkeit des Ereignisses berechnen lässt.

\(A\): "Nur die ersten fünf Preise entfallen auf die Kategorie 4."

\(B\): "Genau die Hälfte der Preise entfällt auf die Kategorie 4."

\(C\): "Die Preise verteilen sich jeweils zur Hälfte auf die Kategorien 1 und 4."

(5 BE)