Anzeige nach Tag: Kugelgleichung

Teilaufgabe 1a

Gegeben ist die Kugel mit dem Mittelpunkt \(M(1|4|0)\) und Radius 6.

Bestimmen Sie alle Werte \(p \in \mathbb R\), für die der Punkt \(P(5|1|p)\) auf der Kugel liegt.

(3 BE)

Lösung - Aufgabe 5

Gegeben ist die Gerade \(g\) mit der Gleichung \(g \colon \overrightarrow{X} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) sowie die Kugel \(K\) mit dem Mittelpunkt \(M(3|4|5)\) und dem Radius \(r = 3\).

Zeigen Sie durch Rechnung, dass die Gerade \(g\) die Kugel \(K\) tangiert.

Aufgaben

Aufgabe 1

Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

 

Aufgabe 2

Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

 

Aufgabe 3

Abbildung Klausur Q12/2-002 Aufgabe 3, Wahrscheinlichkeitsverteilung einer nach B(n;p) binomialverteilten Zufallsgröße X

Die Abbildung zeigt die vollständige Wahrscheinlichkeitsverteilung einer nach \(B(n;p)\) binomialverteilten Zufallsgröße \(X\) und kennzeichnet die Lage des Erwartungswerts \(\mu = E(X)\).

Bestimmen Sie mithilfe der Abbildung und unter Verwendung des Stochastischen Tafelwerks die Werte der Parameter \(n\) und \(p\). Erläutern Sie Ihre Vorgehensweise.

 

Aufgabe 4

Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

(mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

 

Aufgabe 5

Gegeben ist die Gerade \(g\) mit der Gleichung \(g \colon \overrightarrow{X} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) sowie die Kugel \(K\) mit dem Mittelpunkt \(M(3|4|5)\) und dem Radius \(r = 3\).

Zeigen Sie durch Rechnung, dass die Gerade \(g\) die Kugel \(K\) tangiert.

Lösung - Aufgabe 4

Gegeben sind die Punkte \(A(4|-2|-1)\), \(B(2|4|5)\) und \(C(5|-6|3)\).

 

a) Ermitteln Sie die Größe des Innenwinkels \(\alpha\) des Dreiecks \(ABC\).

b) Geben Sie die Gleichung der Kugel \(K\) mit dem Mittelpunkt \(C\) in Koordinatendarstellung an, auf deren Oberfläche der Punkt \(A\) liegt. Untersuchen Sie mithilfe der Kugelgleichung, ob der Punkt \(B\) innerhalb der Kugel \(K\), auf der Kugeloberfläche von \(K\) oder außerhalb von \(K\) liegt.

Aufgaben

Aufgabe 1

Berechnen Sie jeweils die erste Ableitung der folgenden Funktionen:

 

a) \(f(x) = (3x + 2) \cdot \sqrt{\dfrac{1}{x} + 2}; \; x \neq 0\)

b) \(g(x) = e^{\frac{\cos{x}}{x}}; \; x \neq 0\)

 

Aufgabe 2

Gegeben ist die Funktion \(f \colon x \mapsto 2x^{2} \cdot \sin{x}\).

Bestimmen Sie die Gleichung der Tangente \(T\) an den Graphen \(G_{f}\) der Funktion \(f\) an der Stelle \(x = \frac{\pi}{2}\).

 

Aufgabe 3

Gegeben ist die Funktionenschar \(f_{k} \colon x \mapsto x \cdot \sqrt{k - 2x}\) mit \(k \in \mathbb R^{+}\).

 

a) Geben Sie die maximale Definitionsmenge von \(f_{k}\) in Abhängigkeit des Parameters \(k\) an.

b) Untersuchen Sie das Symmetrieverhalten der Kurvenschar von \(f_{k}\) bezüglich des Koordinatensystems.

c) Untersuchen Sie das Verhalten von \(f_{k}\) an den Rändern des Definitionsbereichs.

d) Weisen Sie nach, dass für die Ableitung von \(f_{k}\) gilt: \(f'_{k}(x) = \dfrac{k - 3x}{\sqrt{k - 2x}}\).

Im Folgenden sei \(k = 4\). Der Graph der Funktion \(f_{4}\) wird mit \(G_{f_{4}}\) bezeichnet.

e) Mithilfe des Ansatzes \(x = f_{4}(x)\) lässt sich der Schnittpunkt des Graphen \(G_{f_{4}}\) mit dem Graphen der Umkehrfunktion von \(f_{4}\) ermitteln. Beschreiben Sie die Idee dieses Ansatzes. Eine Berechnung ist nicht erforderlich!

f) Untersuchen Sie das Monotonieverhalten von \(f_{4}\) unter Berücksichtigung des maximalen Definitionsbereichs und bestimmen Sie die Lage und Art des Extrempunkts von \(G_{f_{4}}\).

 

Aufgabe 4

Gegeben sind die Punkte \(A(4|-2|-1)\), \(B(2|4|5)\) und \(C(5|-6|3)\).

 

a) Ermitteln Sie die Größe des Innenwinkels \(\alpha\) des Dreiecks \(ABC\).

b) Geben Sie die Gleichung der Kugel \(K\) mit dem Mittelpunkt \(C\) in Koordinatendarstellung an, auf deren Oberfläche der Punkt \(A\) liegt. Untersuchen Sie mithilfe der Kugelgleichung, ob der Punkt \(B\) innerhalb der Kugel \(K\), auf der Kugeloberfläche von \(K\) oder außerhalb von \(K\) liegt.

 

Aufgabe 5

Ein Unternehmen fertigt in großer Stückzahl ein elektronisches Bauteil. Bei der Herstellung können zwei Arten von Fehlern auftreten, ein elektrischer Fehler und ein optischer Fehler. Betrachtet werden folgende Ereignisse:

\(E\): „Ein zufällig ausgewähltes Bauteil weist einen elektrischen Fehler auf."

\(O\): „Ein zufällig ausgewähltes Bauteil weist einen optischen Fehler auf."

Aus laufender Qualitätskontrolle ist bekannt, dass 5 % der gefertigten Bauteile einen elektrischen Fehler aufweisen. Zudem haben 3 % einen elektrischen, aber keinen optischen Fehler sowie 4 % einen optischen, aber keinen elektrischen Fehler.

 

a) Beschreiben Sie das Ereignis \(\overline{E \cup O}\) im Sachzusammenhang.

b) Erstellen Sie eine vollständig ausgefüllte Vierfeldertafel und geben Sie daraus an, mit welcher Wahrscheinlichkeit ein zufällig ausgewähltes Bauteil

α) genau einen der beiden Fehler aufweist.

β) höchstens einen der beiden Fehler aufweist.

c) Untersuchen Sie die Ereignisse \(E\) und \(O\) auf Unabhängigkeit.

d) Wie viele Bauteile müssen mindestens zufällig ausgewählt werden, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein Bauteil zu erhalten, das einen elektrischen Fehler aufweist?

Teilaufgabe 1a

Gegeben sind die beiden bezüglich der \(x_{1}x_{3}\)-Ebene symmetrisch liegenden Punkte \(A(2|3|1)\) und \(B(2|-3|1)\) sowie der Punkt \(C(0|2|0)\).

Weisen Sie nach, dass das Dreieck \(ABC\) bei \(C\) rechtwinklig ist.

(3 BE)

Teilaufgabe f

Alle Eckpunkte des Oktaeders liegen auf einer Kugel. Geben Sie eine Gleichung dieser Kugel an.

Berechnen Sie den Anteil des Oktaedervolumens am Kugelvolumen.

(3 BE)

Teilaufgabe 2b

Durch die Punkte \(A\) und \(B\) verläuft die Gerade \(g\).

Betrachtet werden Geraden, für welche die Bedingungen I und II gelten:

I  Jede dieser Geraden schneidet die Gerade \(g\) orhogonal.

II Der Abstand jeder dieser Geraden vom Punkt \(A\) beträgt 3.

Ermitteln Sie eine Gleichung für eine dieser Geraden.

(3 BE)

Teilaufgabe 2b

Durch die Punkte \(A\) und \(B\) verläuft die Gerade \(g\).

Betrachtet werden Geraden, für welche die Bedingungen I und II gelten:

I  Jede dieser Geraden schneidet die Gerade \(g\) orhogonal.

II Der Abstand jeder dieser Geraden vom Punkt \(A\) beträgt 3.

Ermitteln Sie eine Gleichung für eine dieser Geraden.

(3 BE)

Seite 1 von 2