Laplace Wahrscheinlichkeit

Teilaufgabe 4b

Begründen Sie, dass die Wahrscheinlichkeit dafür, dass sich drei verschiedene Motive auf den Ansteckern befinden, den Wert \(\dfrac{(n - 1) \cdot (n - 2)}{n^{2}}\) hat.

(2 BE)

Teilaufgabe 4a

Am Ausgang des Freizeitparks gibt es einen Automaten, der auf Knopfdruck einen Anstecker mit einem lustigen Motiv bedruckt und anschließend ausgibt. Für den Druck wird aus \(n\) verschiedenen Motiven eines zufällig ausgewählt, wobei jedes Motiv die gleiche Wahrscheinlichkeit hat.

Ein Kind holt sich drei Anstecker aus dem Automaten.

Bestimmen Sie für den Fall \(n = 5\) die Wahrscheinlichkeit dafür, dass nicht alle drei Anstecker dasselbe Motiv haben.

(2 BE)

Teilaufgabe 1

An einem Samstagvormittag kommen nacheinander vier Familien zum Eingangsbereich eines Freizeitparks. Jede der vier Familien bezahlt an einer der sechs Kassen, wobei davon ausgegangen werden soll, dass jede Kasse mit der gleichen Wahrscheinlichkeit gewählt wird. Beschreiben Sie im Sachzusammenhang zwei Ereignisse \(A\) und \(B\), deren Wahrscheinlichkeiten sich mit den folgenden Termen berechnen lassen:

\[P(A) = \frac{6 \cdot 5 \cdot 4 \cdot 3}{6^{4}}; \enspace P(B) = \frac{6}{6^{4}}\]

(3 BE)

Teilaufgabe 1

In einer Gemeinde gibt es 6250 Haushalte, von denen 2250 über einen schnellen Internetanschluss verfügen. Zwei Drittel der Haushalte, die über einen schnellen Internetanschluss verfügen, besitzen auch ein Abonnement eines Streamingdiensts. 46 % aller Haushalte verfügen weder über einen schnellen Internetanschluss noch besitzen sie ein Abonnement eines Streamingdiensts.

Betrachtet werden die folgenden Ereignisse:

\(A\): „Ein zufällig ausgewählter Haushalt verfügt über einen schnellen Internetanschluss."

\(B\): „Ein zufällig ausgewählter Haushalt besitzt ein Abonnement eines Streamingdiensts,"

Stellen Sie zu der beschriebenen Situation eine vollständig ausgefüllte Vierfeldertafel auf und überprüfen Sie, ob die Ereignisse \(A\) und \(B\) stochastisch unabhängig sind.

(5 BE)

Teilaufgabe a

Gegeben sind grüne und rote Würfel, deren Seitenflächen unterschiedlich beschriftet sind und beim Werfen mit jeweils gleicher Wahrscheinlichkeit auftreten. Jeder grüne Würfel trägt auf fünf Seitenflächen die Augenzahl 1 und auf einer die Augenzahl 6. Jeder rote Würfel trägt auf jeweils zwei Seitenflächen die Augenzahlen 1, 3 bzw. 6.

In einer Urne befinden sich drei grüne Würfel und zwei rote Würfel. Der Urne werden mit einem Griff zwei Würfel zufällig entnommen. Geben Sie einen Term an, mit dem man die Wahrscheinlichkeit dafür bestimmen kann, dass ein roter Würfel und ein grüner Würfel entnommen werden.

(2 BE)

Teilaufgabe 1b

Ein zufällig ausgewähltes Einfamilienhaus ist mit einer solarthermischen Anlage ausgestattet. Mit welcher Wahrscheinlichkeit hat es eine Holzpelletheizung?

(2 BE)

Teilaufgabe 1a

In Sonnenstadt gibt es 6000 Einfamilienhäuser, von denen 2400 mit einer Holzpelletheizung ausgestattet sind. Bei zwei Drittel der Einfamilienhäuser mit Holzpelletheizung ist diese mit einer solarthermischen Anlage kombiniert. 50 % aller Einfamilienhäuser sind weder mit einer Holzpelletheizung noch mit einer solarthermischen Anlage ausgestattet.

Stellen Sie zu der beschriebenen Situation eine vollständig ausgefüllte Vierfeldertafel auf

(3 BE)

Teilaufgabe 2c

30 der im Parkhaus stehenden Autos werden zufällig ausgewählt. Bestimmen Sie die Wahrscheinlichkeit dafür, dass darunter genau 40 % mit ESP ausgerüstet sind.

(4 BE)

Teilaufgabe 1a

Ein Getränkehersteller führt eine Werbeaktion durch, um die Verkaufszahlen seiner Saftschorlen zu erhöhen. Bei 100000 der für die Werbeaktion produzierten zwei Millionen Flaschen wird auf der Innenseite des Verschlusses eine Marke für einen Geldgewinn angebracht. Von den Gewinnmarken sind 12000 jeweils 5 € wert, der Rest ist jeweils 1 € wert. Alle Flaschen der Werbeaktion werden zufällig auf Kästen verteilt. Im Folgenden werden nur Flaschen aus der Werbeaktion betrachtet.

Es wird eine Flasche geöffnet. Betrachtet werden folgende Ereignisse:

\(A\): „Der Verschluss enthält eine Gewinnmarke."

\(B\): „Der Verschluss enthält eine Gewinnmarke im Wert von 1 €."

Berechnen Sie die Wahrscheinlichkeiten \(P(A)\) und \(P(B)\).

(2 BE)

Teilaufgabe 2a

An einem P-Seminar nehmen acht Mädchen und sechs Jungen teil, darunter Anna und Tobias. Für eine Präsentation wird per Los aus den Teilnehmerinnen und Teilnehmern ein Team aus vier Personen zusammengestellt.

Geben Sie zu jedem der folgenden Ereignisse einen Term an, mit dem die Wahrscheinlichkeit des Ereignisses berechnet werden kann.

\(A\): „Anna und Tobias gehören dem Team an."

\(B\): „Das Team besteht aus gleich vielen Mädchen und Jungen."

(3 BE)

Seite 1 von 2