Lineare (Un)Abhängigkeit von zwei Vektoren

Teilaufgabe d

Der Punkt \(L\), der vertikal über dem Mittelpunkt der Kante \([A_{1}A_{2}]\) liegt, veranschaulicht im Modell die Position einer Flutlichtanlage, die 12 m über der Grundfläche angebracht ist. Die als punktförmig angenommene Lichtquelle beleuchtet - mit Ausnahme des Schattenbereichs in der Nähe der Hallenwände - das gesamte Gelände um die Halle.

Die Punkte \(L\), \(B_{2}\) und \(B_{3}\) legen eine Ebene \(F\) fest. Ermitteln Sie eine Gleichung von \(F\) in Normalenform.

(zur Kontrolle: \(F \colon 3x_{1} + x_{2} + 5x_{3} - 90 = 0\))

(5 BE)

Teilaufgabe a

Die Abbildung zeigt den Würfel \(ABCDEFG\) mit \(A(0|0|0)\) und \(G(5|5|5)\) in einem kartesischen Koordinatensystem. Die Ebene \(T\) schneidet die Kanten des Würfels unter anderem in den Punkten \(I(5|0|1)\), \(J(2|5|0)\), \(K(0|5|2)\) und \(L(1|0|5)\).

Abbildung Geometrie 2 Mathematik Abitur Bayern 2019 B

Zeichnen Sie das Viereck \(IJKL\) in die Abbildung ein und zeigen Sie, dass es sich um ein Trapez handelt, bei dem zwei gegenüberliegende Seiten gleich lang sind.

(4 BE)

Teilaufgabe b

Ermitteln Sie eine Gleichung der Ebene \(T\) in Normalenform.

(zur Kontrolle: \(T \colon 5x_{1} + 4x_{2} + 5x_{3} - 30 = 0\))

(3 BE)

Teilaufgabe c

Zeigen Sie, dass die Kletterwand die Form eines Trapezes hat.

(2 BE)

Teilaufgabe b

Die Punkte \(A\), \(B\), \(E\) und \(F\) liegen in der Ebene \(L\). Ermitteln Sie eine Gleichung von \(L\) in Normalenform.

(zur Kontrolle: \(L \colon 2x_{1} + 2x_{2} + 3x_{3} - 12 = 0\))

(4 BE)

Teilaufgabe a

Auf einem Spielplatz wird ein dreieckiges Sonnensegel errichtet, um einen Sandkasten zu beschatten. Hierzu werden an drei Ecken des Sandkastens Metallstangen im Boden befestigt, an deren Enden das Sonnensegel fixiert wird.

In einem kartesischen Koordinatensystem stellt die \(x_{1}x_{2}\)-Ebene den horizontalen Boden dar. Der Sandkasten wird durch das Rechteck mit den Eckpunkten \(K_{1}(0|4|0)\), \(K_{2}(0|0|0)\), \(K_{3}(3|0|0)\) und \(K_{4}(3|4|0)\) beschrieben. Das Sonnensegel wird durch das ebene Dreieck mit den Eckpunkten \(S_{1}(0|6|2{,}5)\), \(S_{2}(0|0|3)\) und \(S_{3}(6|0|2{,}5)\) dargestellt (vgl. Abbildung 1). Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität.

Abbildung 1 Geometrie 1 Mathematik Abitur Bayern 2018 BAbb. 1

Die Punkte \(S_{1}\), \(S_{2}\) und \(S_{3}\) legen die Ebene \(E\) fest.

Ermitteln Sie eine Gleichung der Ebene \(E\) in Normalenform.

(zur Kontrolle: \(E \colon x_{1} + x_{2} + 12x_{3} - 36 = 0\))

(4 BE)

Teilaufgabe 1a

Die Punkte \(A(1|1|1)\), \(B(0|2|2)\) und \(C(-1|2|0)\) liegen in der Ebene \(E\).

Bestimmen Sie eine Gleichung von \(E\) in Normalenform.

(4 BE)

Lösung - Aufgabe 5

Beschreiben Sie unter Verwendung einer geeigneten Skizze, wie sich nachweisen lässt, dass eine Gerade orthogonal zu einer Ebene ist.

Lösung - Aufgabe 3

Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{u}\) und \(h \colon \overrightarrow{X} = \overrightarrow{B} + \mu \cdot \overrightarrow{v}\) mit \(\lambda, \mu \in \mathbb R\). Entscheiden Sie ob die folgenden Aussagen wahr oder falsch sind. Begründen Sie Ihre Entscheidung kurz.

a) Gilt \(\overrightarrow{u} = k \cdot \overrightarrow{v}; \; k \in \mathbb R\), so verlaufen die Geraden \(g\) und \(h\) parallel zueinander.

b) Gilt \(\overrightarrow{u} \circ \overrightarrow{v} = 0\), so schneiden sich die Geraden \(g\) und \(h\) rechtwinklig.

Aufgaben

Aufgabe 1

Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{8 - 2x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

a) Geben Sie die maximale Definitionsbemenge \(D_{f}\) sowie die Wertemenge \(W_{f}\) der Funktion \(f\) an.

b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist. Bestimmen Sie den Funktionsterm \(f^{-1}(x)\). Geben Sie die Definitions- und die Wertemenge der Umkehrfunktion \(f^{-1}\) an.

c) Der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{f^{-1}}\) der Umkehrfunktion \(f^{-1}\) schließen im ersten Quadranten mit den Koordinatenachsen ein herzförmiges Flächenstück mit dem Flächeninhalt \(A\) ein.

Zeichnen Sie \(G_{f}\) sowie \(G_{f^{-1}}\) mithilfe der Funktionswerte \(f(0)\), \(f(2)\), \(f(3{,}5)\) und \(f(4)\) im ersten Quadranten eines gemeinsamen Koordinatensystems. Achten Sie dabei insbesondere auf den Verlauf von \(G_{f}\) an der Stelle \(x = 4\). Schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Berechnen Sie den Flächeninhalt \(A\).

 

Aufgabe 2

Geben Sie jeweils eine Gleichung der Gerade \(g\) an, für die gilt:

a) Die Gerade \(g\) ist eine Ursprungsgerade und der Punkt \(P(1|3|4)\) liegt auf \(g\).

b) Die Gerade \(g\) verläuft parallel zur \(x_{2}\)-Achse durch den Punkt \(Q(-2|2|0)\).

c) Die Gerade \(g\) verläuft parallel zur \(x_{1}x_{3}\)-Ebene durch den Punkt \(R(-2{,}5|1|1)\).

d) Die Gerade \(g\) verläuft durch die Punkte \(S(3|2|-1)\) und \(T(6|4|0)\).

 

Aufgabe 3

Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{u}\) und \(h \colon \overrightarrow{X} = \overrightarrow{B} + \mu \cdot \overrightarrow{v}\) mit \(\lambda, \mu \in \mathbb R\). Entscheiden Sie ob die folgenden Aussagen wahr oder falsch sind. Begründen Sie Ihre Entscheidung kurz.

a) Gilt \(\overrightarrow{u} = k \cdot \overrightarrow{v}; \; k \in \mathbb R\), so verlaufen die Geraden \(g\) und \(h\) parallel zueinander.

b) Gilt \(\overrightarrow{u} \circ \overrightarrow{v} = 0\), so schneiden sich die Geraden \(g\) und \(h\) rechtwinklig.

 

Aufgabe 4

Untersuchen Sie, ob die Punkte \(A(3|1|0)\), \(B(2|-1|-2)\), \(C(-2|1|-2)\) und \(D(4|3|-4)\) in einer Ebene liegen. 

 

Aufgabe 5

Beschreiben Sie unter Verwendung einer geeigneten Skizze, wie sich nachweisen lässt, dass eine Gerade orthogonal zu einer Ebene ist.