Lösung quadratischer Gleichungen

Teilaufgabe 3b

Es gibt Werte von \(m\), für die die Graphen \(G_{f}\) und \(G_{m}\) jeweils keinen gemeinsamen Punkt haben. Geben Sie diese Werte von \(m\) an.

(2 BE)

Teilaufgabe 1c

Die Geschäftsführung will im Mittel für einen Einkauf einen Rabatt von 16 % gewähren. Berechnen Sie für diese Vorgabe den Wert der Wahrscheinlichkeit \(p\).

(3 BE)

Teilaufgabe 2a

Der Graph der in \(\mathbb R\) definierten Funktion \(h\,\colon x \mapsto -\frac{1}{2}x^2 + 2x + 4\) ist die Parabel \(G_h\). Der Graph der in Aufgabe 1e betrachteten Umkehrfunktion \(f^{-1}\) ist ein Teil dieser Parabel.

Berechnen Sie die Koordinaten der Schnittpunkte von \(G_h\) mit der durch die Gleichung \(y = x\) gegebenen Winkelhalbierenden \(w\) des I. und III. Quadranten.

(Teilergebnis: x-Koordinaten der Schnittpunkte: -2 und 4)

(3 BE)

Teilaufgabe 3c

Für welche Füllhöhen \(x\) liegt der Schwerpunkt \(S\) höchstens 5 cm hoch? Beantworten Sie diese Frage zunächst näherungsweise mithilfe von Abbildung 2 und anschließend durch Rechnung.

(6 BE)

Teilaufgabe 1

Gegeben ist die Funktion \(\displaystyle f \colon x \mapsto \frac{2x + 3}{x^2 + 4x + 3}\) mit maximaler Definitionsmenge \(D\). Bestimmen Sie \(D\) sowie die Nullstelle vom \(f\,\).

(3 BE)