Lotgerade zu einer Ebene

Teilaufgabe e

Ein zweiter Bohrkanal wird benötigt, durch den das entnommene Wasser abgekühlt zurück in die wasserführende Gesteinsschicht geleitet wird. Der Bohrkanal soll geradlinig und senkrecht zur Erdoberfläche verlaufen. Für den Beginn des Bohrkanals an der Erdoberfläche kommen nur Bohrstellen in Betracht, die im Modell durch einen Punkt \(B(t|-t|0)\) mit \(t \in \mathbb R\) beschrieben werden können.

Zeigen Sie rechnerisch, dass der zweite Bohrkanal die wasserführende Gesteinsschicht im Modell im Punkt \(T(t|-t|-4{,}3)\) erreicht, und erläutern Sie, wie die Länge des zweiten Bohrkanals bis zur wasserführenden Gesteinsschicht von der Lage der zugehörigen Bohrstelle beeinflusst wird.

(3 BE)

Lösung - Aufgabe 5

Beschreiben Sie unter Verwendung einer geeigneten Skizze, wie sich nachweisen lässt, dass eine Gerade orthogonal zu einer Ebene ist.

Aufgaben

Aufgabe 1

Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{8 - 2x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

a) Geben Sie die maximale Definitionsbemenge \(D_{f}\) sowie die Wertemenge \(W_{f}\) der Funktion \(f\) an.

b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist. Bestimmen Sie den Funktionsterm \(f^{-1}(x)\). Geben Sie die Definitions- und die Wertemenge der Umkehrfunktion \(f^{-1}\) an.

c) Der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{f^{-1}}\) der Umkehrfunktion \(f^{-1}\) schließen im ersten Quadranten mit den Koordinatenachsen ein herzförmiges Flächenstück mit dem Flächeninhalt \(A\) ein.

Zeichnen Sie \(G_{f}\) sowie \(G_{f^{-1}}\) mithilfe der Funktionswerte \(f(0)\), \(f(2)\), \(f(3{,}5)\) und \(f(4)\) im ersten Quadranten eines gemeinsamen Koordinatensystems. Achten Sie dabei insbesondere auf den Verlauf von \(G_{f}\) an der Stelle \(x = 4\). Schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Berechnen Sie den Flächeninhalt \(A\).

 

Aufgabe 2

Geben Sie jeweils eine Gleichung der Gerade \(g\) an, für die gilt:

a) Die Gerade \(g\) ist eine Ursprungsgerade und der Punkt \(P(1|3|4)\) liegt auf \(g\).

b) Die Gerade \(g\) verläuft parallel zur \(x_{2}\)-Achse durch den Punkt \(Q(-2|2|0)\).

c) Die Gerade \(g\) verläuft parallel zur \(x_{1}x_{3}\)-Ebene durch den Punkt \(R(-2{,}5|1|1)\).

d) Die Gerade \(g\) verläuft durch die Punkte \(S(3|2|-1)\) und \(T(6|4|0)\).

 

Aufgabe 3

Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{u}\) und \(h \colon \overrightarrow{X} = \overrightarrow{B} + \mu \cdot \overrightarrow{v}\) mit \(\lambda, \mu \in \mathbb R\). Entscheiden Sie ob die folgenden Aussagen wahr oder falsch sind. Begründen Sie Ihre Entscheidung kurz.

a) Gilt \(\overrightarrow{u} = k \cdot \overrightarrow{v}; \; k \in \mathbb R\), so verlaufen die Geraden \(g\) und \(h\) parallel zueinander.

b) Gilt \(\overrightarrow{u} \circ \overrightarrow{v} = 0\), so schneiden sich die Geraden \(g\) und \(h\) rechtwinklig.

 

Aufgabe 4

Untersuchen Sie, ob die Punkte \(A(3|1|0)\), \(B(2|-1|-2)\), \(C(-2|1|-2)\) und \(D(4|3|-4)\) in einer Ebene liegen. 

 

Aufgabe 5

Beschreiben Sie unter Verwendung einer geeigneten Skizze, wie sich nachweisen lässt, dass eine Gerade orthogonal zu einer Ebene ist.

Teilaufgabe f

Um die Sonneneinstrahlung im Laufe des Tages möglichst effektiv zur Energiegewinnung nutzen zu können, lässt sich das Metallrohr mit dem Solarmodul um die Längsachse des Rohrs drehen. Die Größe des Neigungswinkels \(\varphi\) gegenüber der Horizontalen bleibt dabei unverändert. Betrachtet wird der Eckpunkt des Solarmoduls, der im Modell durch den Punkt \(A\) dargestellt wird. Berechnen Sie den Radius des Kreises, auf dem sich dieser Eckpunkt des Solarmoduls bei der Drehung des Metallrohrs bewegt, auf Zentimeter genau.

(4 BE)

Teilaufgabe 2b

Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

(3 BE)

Teilaufgabe 2b

Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

(3 BE)