Mathematik Abitur Bayern 2011 G8

Mathematik Abitur Bayern - Aufgaben mit Lösungen

Teilaufgabe b

Alle Punkte \(C^\ast\) im Raum, die zusammen mit \(A\) und \(B\) ein zum Dreieck \(ABC\) kongruentes Dreieck festlegen, bilden zwei gleich große Kreise. Beschreiben Sie (z.B. durch eine Skizze) die Lage der beiden Kreise bezüglich der Strecke \([AB]\) und ermitteln Sie den Radius der beiden Kreise.

(6 BE)

Teilaufgabe f

Der Umkreis des Dreiecks \(ABC\) und der Punkt \(S\) legen einen Kegel fest. Zeigen Sie, dass es sich um einen geraden Kegel handelt, der Mittelpunkt des Grundkreises also zugleich der Höhenfußpunkt des Kegels ist. Berechnen Sie, um wie viel Prozent das Volumen des Kegels größer ist als das Volumen der Pyramide \(ABCS\).

(7 BE)

Teilaufgabe d

Berechnen Sie die Größe des Neigungswinkels der Seitenkante \([BS]\) gegen die Ebene \(E\) sowie das Volumen \(V\) der Pyramide.

(Teilergebnis: \(V = 216\))

(7 BE)

Teilaufgabe e

Zeigen Sie, dass dieser Abstand mit der minimalen Entfernung des Hubschraubers vom Mittelpunkt des Grundstücks übereinstimmt, der im Modell durch den Punkt \(M(-40|30|30)\) dargestellt wird.

(5 BE)

Teilaufgabe e

Welche Lagebeziehung muss eine Gerade zur Ebene \(E\) haben, wenn für jeden Punkt \(P\) dieser Geraden die Pyramide \(ABCP\) das gleiche Volumen wie die Pyramide \(ABCS\) besitzen soll? Begründen Sie Ihre Antwort.

(3 BE)

Teilaufgabe a

In einem kartesischen Koordinatensystem sind die Punkte \(A\,(1|7|3)\), \(B\,(6|-7|1)\) und \(C\,(-2|1|-3)\) gegeben.

Weisen Sie nach, dass die Punkte \(A\), \(B\) und \(C\) ein rechtwinkliges Dreieck festlegen, dessen Hypothenuse die Strecke \([AB]\) ist und dessen kürzere Kathete die Länge 9 hat.

(4 BE)

Teilaufgabe c

Das Dreieck \(ABC\) aus Aufgabe \(a\) ist die Grundfläche einer dreiseitigen Pyramide \(ABCS\) mit der Spitze \(S(11{,}5|4|-6)\).

 

Die Grundfläche der Pyramide liegt in einer Ebene \(E\). Ermitteln Sie eine Gleichung von \(E\) in Normalenform.

(mögliches Ergebnis: \(E\colon \enspace 2x_1 + x_2 -2x_3 - 3 = 0)\)

(3 BE)

Teilaufgabe d

Ein Hubschrauber überfliegt das Grundstück entlang einer Linie, die im Modell durch die Gerade

\[g\colon \enspace \overrightarrow X = \begin {pmatrix} -20 \\ 40 \\ 40 \end {pmatrix} + \lambda \cdot \begin {pmatrix} 4 \\ 5 \\ -3 \end {pmatrix}\,, \enspace \lambda \in \mathbb R \;,\]

beschrieben wird.

 

Weisen Sie nach, dass der Hubschrauber mit einem konstanten Abstand von 20 m zum Hang fliegt.

(3 BE)

Teilaufgabe c

Das Rechteck \(OABC\) ist das Modell eines steilen Hanggrundstücks; die positive \(x_1\)-Achse beschreibt die südliche, die positive \(x_2\)-Achse die östliche Himmelsrichtung (im Koordinatensystem: 1 LE entspricht 1 m, d.h. die Länge des Grundstücks in West-Ost-Richtung beträgt 60 m.).

Obwohl das Rechteck \(OABC\) den Flächeninhalt 6000 besitzt, ist das Hanggrundstück auf einer Landkarte des Grundbuchamts mit einer Größe von 4800 m2 verzeichnet. Stellen Sie ausgehend von der Zeichnung aus Aufgabe b eine Vermutung an, welche sinnvolle Regelung das Grundbuchamt damit bei der Festlegung der Grundstücksgröße umsetzt. Bestätigen Sie Ihre Vermutung durch Rechnung.

(3 BE)