Mathematik Abitur Bayern 2013

Teilaufgabe 1a

Gegeben ist die Funktion \(g \colon x \mapsto \sqrt{3x + 9}\) mit maximaler Definitionsmenge \(D\).

Bestimmen Sie \(D\) und geben Sie die Nullstelle von \(g\) an.

(3 BE)

Teilaufgabe 1b

Ermitteln Sie die Gleichung der Tangente an den Graphen von \(g\) im Punkt \(P\,(0|3)\).

(4 BE)

Teilaufgabe 4

Abbildung 1 zeigt den Graphen \(G_f\) einer in \(\mathbb R\) definierten Funktion \(f\).

Skizzieren Sie in Abbildung 1 den Graphen der in \(\mathbb R\) definierten Integralfunktion \(\displaystyle F \colon x \mapsto \int_1^x f(t)\,dt\). Berücksichtigen Sie dabei mit jeweils angemessener Genauigkeit insbesondere die Nullstellen und Extremstellen von \(F\) sowie \(F(0)\).

Abbildung 1Abb. 1

(6 BE)

Teilaufgabe 2a

Der Umfrage zufolge hätte der Kandidat der Partei A etwa 50 % aller Stimmen erhalten, wenn die Wahl zum Zeitpunkt der Befragung stattgefunden hätte. Ein Erfolg im ersten Wahlgang, für den mehr als 50 % aller Stimmen erforderlich sind, ist demnach fraglich. Deshalb rät die von der Partei A eingesetzte Wahlkampfberaterin in der Endphase des Wahlkampfs zu einer zusätzlichen Kampagne. Der Schatzmeister der Partei A möchte die hohen Kosten, die mit einer zusätzlichen Kampagne verbunden wären, jedoch möglichst vermeiden.

Um zu einer Entscheidung über die Durchführung einer zusätzlichen Kampagne zu gelangen, soll die Nullhypothese „Der Kandidat der Partei A würde gegenwärtig höchstens 50 % aller Stimmen erhalten." mithilfe einer Stichprobe von 200 Wahlberechtigten auf einem Signifikanzniveau von 5 % getestet werden. Bestimmen Sie die zugehörige Entscheidungsregel.

(5 BE)