Mathematik Abitur Bayern 2014

  • Gegeben ist die Funktion \(\displaystyle f \, \colon x \mapsto \frac{x}{\ln x}\) mit Definitionsmenge \(\mathbb R^+ \, \backslash \{1\}\). Bestimmen Sie Lage und Art des Extrempunkts des Graphen von \(f\).

    (5 BE)

  • Gegeben ist die in \(\mathbb R\) definierte  Funktion \(f\)  mit \(f(x) = e^x \cdot \left( 2x + x^2 \right)\).

    Bestimmen Sie die Nullstellen der Funktion \(f\).

    (2 BE)

  • Zeigen Sie, dass die in \(\mathbb R\) definierte Funktion \(F\) mit \(F(x) = x^2 \cdot e^x\) eine Stammfunktion von \(f\) ist. Geben eine Gleichung einer weiteren Stammfunktion \(G\) von \(f\) an, für die \(G(1) = 2e\) gilt.

    (3 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(g_{a,c} \, \colon x \mapsto \sin (ax) + c\) mit \(a,c \in \mathbb R^+_0\).

    Geben Sie für jede der beiden folgenden Eigenschaften einen möglichen Wert für \(a\) und einen möglichen Wert für \(c\) so an, dass die zugehörige Funktion \(g_{a,c}\) diese Eigenschaft besitzt.

    α) Die Funktion\(g_{a,c}\) hat die Wertemenge \([0;2]\).

    β) Die Funktion \(g_{a,c}\) hat im Intervall \([0;\pi]\) genau drei Nullstellen.

    (3 BE)

  • Ermitteln Sie in Abhängigkeit von \(a\), welche Werte die Ableitung von \(g_{a,c}\) annehmen kann.

    (2 BE)

  • Die Abbildung zeigt den Graphen einer Funktion \(f\).

    Abbildung zu Teilaufgabe 4a

    Beschreiben Sie für \(a \leq x \leq b\) den Verlauf des Graphen einer Stammfunktion von \(f\).

    (2 BE)

  • Skizzieren Sie in der Abbildung den Graphen einer Stammfunktion von \(f\) im gesamten dargestellten Bereich. 

    (3 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten periodischen Funktion an, die die angegebene Eigenschaft hat.

    Der Graph der Funktion \(g\) geht aus dem Graphen der in \(\mathbb R\) definierten Funktion \(x \mapsto \sin x\) durch Spiegelung an der y-Achse hervor.

    (1 BE)

  • Die Funktion \(h\) hat den Wertebereich \([1;3]\).

    (1 BE)

  • Die Funktion \(k\) besitzt die Periode \(\pi\).

    (1 BE)

  • Gegeben ist die in \(\mathbb R\) definierte  Funktion \(f\)  mit \(f(x) = e^x \cdot \left( 2x + x^2 \right)\).

    Bestimmen Sie die Nullstellen der Funktion \(f\).

    (2 BE)

  • Zeigen Sie, dass die in \(\mathbb R\) definierte Funktion \(F\) mit \(F(x) = x^2 \cdot e^x\) eine Stammfunktion von \(f\) ist. Geben eine Gleichung einer weiteren Stammfunktion \(G\) von \(f\) an, für die \(G(1) = 2e\) gilt.

    (3 BE)

  • Der Graph einer in \(\mathbb R\) definierten Funktion \(g \, \colon \mapsto g(x)\) besitzt für \(-5 \leq x \leq 5\) zwei Wendepunkte. Entscheiden Sie, welcher der Graphen I, II und III zur zweiten Ableitungsfunktion \(g''\) von \(g\) gehört. Begründen Sie Ihre Entscheidung.

    Graph I zu Teilaufgabe 3

    Graph II zu Teilaufgabe 3

    Graph III zu Teilaufgabe 3

    (2 BE)

  • In einem Koordinatensystem (vgl. Abbildung 1) werden alle Rechtecke betrachtet, die folgende Bedingungen erfüllen:

    • Zwei Seiten liegen auf den Koordinatenachsen.

    • Ein Eckpunkt liegt auf dem Graphen \(G_f\) der Funktion \(f \, \colon x \mapsto -\ln x\) mit \(0 < x < 1\).

    Abbildung 1 zeigt ein solches Rechteck.

    Abbildung 1 zu Teilaufgabe 4Abb. 1

    Unter den betrachteten Rechtecken gibt es eines mit größtem Flächeninhalt. Berechnen Sie die Seitenlängen dieses Rechtecks.

    (5 BE)

  • Die Abbildung zeigt den Graphen einer Funktion \(f\).

    Abbildung 2 zu Teilaufgabe 5aAbb. 2

    Beschreiben Sie für \(a \leq x \leq b\) den Verlauf des Graphen einer Stammfunktion von \(f\).

    (2 BE)

  • Skizzieren Sie in der Abbildung den Graphen einer Stammfunktion von \(f\) im gesamten dargestellten Bereich. 

    (3 BE)

  • In Urne A befinden sich zwei rote und drei weiße Kugeln. Urne B enthält drei rote und zwei weiße Kugeln. Betrachtet wird folgendes Zufallsexperiment:

    Aus Urne A wird eine Kugel zufällig entnommen und in Urne B gelegt; danach wird aus Urne B eine Kugel zufällig entnommen und in Urne A gelegt.

    Geben Sie alle Möglichkeiten für den Inhalt der Urne A nach der Durchführung des Zufallsexperiments an.

    (2 BE)

  • Betrachtet wir das Ereignis \(E\): „Nach Durchführung des Zufallsexperiments befinden sich wieder drei weiße Kugeln in Urne A." Untersuchen Sie, ob das Ereignis \(E\) eine größere Wahrscheinlichkeit als sein Gegenereignis hat.

    (3 BE)

  • Betrachtet wird eine Bernoullikette mit der Trefferwahrscheinlichkeit 0,9 und der Länge 20. Beschreiben Sie zu dieser Bernoullikette ein Ereignis, dessen Wahrscheinlichkeit durch den Term \(0{,}9^{20} + 20 \cdot 0{,}1 \cdot 0{,}9^{19}\) angegeben wird.

    (2 BE)

  • Die Zufallsgröße \(X\) kann die Werte 0, 1, 2 und 3 annehmen. Die Tabelle zeigt die Wahrscheinlichkeitsverteilung von \(X\) mit \(p_1, p_2 \in [0;1]\).

    Tabelle zu Teilaufgabe 3

    Zeigen Sie, dass der Erwartungswert von \(X\) nicht größer als 2,2 sein kann.

    (3 BE)

Seite 1 von 4