Mathematik Abitur Bayern 2021

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = e^{2x + 1}\). Zeigen Sie, dass \(f\) umkehrbar ist, und ermitteln Sie einen Term der Umkehrfunktion von \(f\).

    (4 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto \ln{\left( \dfrac{1}{x^{2} + 1} \right)}\). Begründen Sie, dass die Wertemenge von \(h\) das Intervall \(]-\infty;0]\) ist.

    (3 BE)

  • Betrachtet wird die in \(\mathbb R^{+}\) definierte Funktion \(f\) mit \(f(x) = \dfrac{1}{\sqrt{x^{3}}}\).

    Zeigen Sie, dass die in \(\mathbb R^{+}\) definierte Funktion \(F\) mit \(F(x) = -\dfrac{2}{\sqrt{x}}\) eine Stammfunktion von \(f\) ist.

    (2 BE)

  • Der Graph von \(f\) schließt mit der \(x\)-Achse sowie den Geraden mit den Gleichungen \(x = 1\) und \(x = b\) mit \(b > 1\) ein Flächenstück ein. Bestimmen Sie denjenigen Wert von \(b\), für den dieses Flächenstück den Inhalt 1 hat.

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = \frac{1}{8}x^{3}\) sowie die Punkte \(Q_{a}(a|f(a))\) für \(a \in \mathbb R\). Die Abbildung zeigt den Graphen von \(f\) sowie die Punkte \(P(0|2)\) und \(Q_{2}\).

    Abbildung Aufgabe 4 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2021

    Berechnen Sie für \(a \neq 0\) die Steigung \(m_{a}\) der Gerade durch die Punkte \(P\) und \(Q_{a}\) in Abhängigkeit von \(a\).

    (zur Kontrolle: \(m_{a} = \dfrac{a^{3} - 16}{8a}\))

    (2 BE)

  • Die Tangente an den Graphen von \(f\) im Punkt \(Q_{a}\) wird mit \(t_{a}\) bezeichnet. Bestimmen Sie rechnerisch denjenigen Wert von \(a \in \mathbb R\), für den \(t_{a}\) durch \(P\) verläuft.

    (3 BE)

  • Gegeben ist die Funktion \(f\) mit \(f(x) = \sqrt{x - 2} + 1\) und maximalem Definitionsbereich.

    Zeichnen Sie den Graphen von \(f\) im Bereich \(2 \leq x \leq 11\) in ein Koordinatensystem.

    (3 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(W\) hat.

    \[W =\; ]-\infty;1]\]

    (2 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(W\) hat.

    \[W =\; ]3;+\infty[\]

    (2 BE)

  • Betrachtet werden eine in \(\mathbb R\) definierte ganzrationale Funktion \(p\) und der Punkt \(Q(2|p(2))\).

    Beschreiben Sie, wie man rechnerisch die Gleichung der Tangente an den Graphen von \(p\) im Punkt \(Q\) ermitteln kann.

    (2 BE)

  • Gegeben ist eine in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto ax^{2} + c\) mit \(a, c \in \mathbb R\), deren Graph im Punkt \(N(1|0)\) die Tangente mit der Gleichung \(y = -x + 1\) besitzt. Bestimmen Sie \(a\) und \(c\).

    (3 BE)

  • Die Abbildung zeigt den Graphen \(G_{f}\) einer in \(\mathbb R\) definierten Funktion \(f\). \(G_{f}\) ist streng monoton fallend und schneidet die \(x\)-Achse im Punkt \((1|0)\).

    Betrachtet wird ferner die Funktion \(g\) mit \(g(x) = \dfrac{1}{f(x)}\) und maximalem Definitionsbereich \(D_{g}\).

    Abbildung Aufgabe 4 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2021

    Begründen Sie, dass \(x = 1\) nicht in \(D_{g}\) enthalten ist, und geben Sie den Funktionswert \(g(-2)\) an.

    (2 BE)

  • Ermitteln Sie mithilfe der Abbildung die \(x\)-Koordinaten der Schnittpunkte der Graphen von \(f\) und \(g\).

    (3 BE)

  • Berechnen Sie den Wert des Integrals \(\displaystyle \int_{2}^{3} f(x)dx\).

    (3 BE)

  • Gegeben ist die Zufallsgröße \(X\) mit der Wertemenge \(\{0;1;2;3;4;5\}\). Die Wahrscheinlichkeitsverteilung von \(X\) ist symmetrisch, d. h. es gilt \(P(X = 0) = P(X = 5)\), \(P(X = 1) = P(X = 4)\), \(P(X = 2) = P(X = 3)\).

    Die Tabelle zeigt die Wahrscheinlichkeitswerte \(P(X \leq k)\) für \(k \in \{0; 1; 2\}\).

    Tabelle Aufgabe a,b Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2021

    Tragen Sie die fehlenden Werte in die Tabelle ein.

    (2 BE)

  • Begründen Sie, dass \(X\) nicht binomialverteilt ist.

    (3 BE)

  • Gegeben ist die Zufallsgröße \(X\) mit der Wertemenge \(\{0;1;2;3;4;5\}\). Die Wahrscheinlichkeitsverteilung von \(X\) ist symmetrisch, d. h. es gilt \(P(X = 0) = P(X = 5)\), \(P(X = 1) = P(X = 4)\), \(P(X = 2) = P(X = 3)\).

    Die Tabelle zeigt die Wahrscheinlichkeitswerte \(P(X \leq k)\) für \(k \in \{0; 1; 2\}\).

    Tabelle Aufgabe a,b Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2021

    Tragen Sie die fehlenden Werte in die Tabelle ein.

    (2 BE)

  • Begründen Sie, dass \(X\) nicht binomialverteilt ist.

    (3 BE)

  • Gegeben ist die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}\), \(\lambda \in \mathbb R\), sowie eine weitere Gerade \(h\), welche parallel zu \(g\) ist und durch den Punkt \(A(2|0|0)\) verläuft. Der Punkt \(B\) liegt auf \(g\) so, dass die Geraden \(AB\) und \(h\) senkrecht zueinander sind.

    Bestimmen Sie die Koordinaten von \(B\).

    (zur Kontrolle: \(B(-2|3|2)\))

    (4 BE)

  • Berechnen Sie den Abstand von \(g\) und \(h\).

    (1 BE)

Seite 1 von 4