Mittelpunkt einer Strecke

Teilaufgabe d

Der Punkt \(L\), der vertikal über dem Mittelpunkt der Kante \([A_{1}A_{2}]\) liegt, veranschaulicht im Modell die Position einer Flutlichtanlage, die 12 m über der Grundfläche angebracht ist. Die als punktförmig angenommene Lichtquelle beleuchtet - mit Ausnahme des Schattenbereichs in der Nähe der Hallenwände - das gesamte Gelände um die Halle.

Die Punkte \(L\), \(B_{2}\) und \(B_{3}\) legen eine Ebene \(F\) fest. Ermitteln Sie eine Gleichung von \(F\) in Normalenform.

(zur Kontrolle: \(F \colon 3x_{1} + x_{2} + 5x_{3} - 90 = 0\))

(5 BE)

Teilaufgabe c

Für \(a \in \mathbb R^{+}\) ist die Gerade \(g_{a} \colon \overrightarrow{X} = \begin{pmatrix} 2{,}5 \\ 0 \\ 3{,}5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0 \\ -10a \\ \frac{2}{a} \end{pmatrix}\) mit \(\lambda \in \mathbb R\) gegeben.

Bestimmen Sie den Wert von \(a\), sodass die Gerade \(g_{a}\) die Würfelfläche \(CDHG\) in ihrem Mittelpunkt schneidet.

(3 BE)

Teilaufgabe 1b

Die Schnittfigur von \(k_{1}\) und \(k_{2}\) ist ein Kreis. Bestimmen Sie die Koordinaten des Mittelpunkts und den Radius dieses Kreises.

(3 BE)

Teilaufgabe 1a

Gegeben ist ein Rechteck \(ABCD\) mit den Eckpunkten \(A(5|-4|-3)\), \(B(5|4|3)\), \(C(0|4|3)\) und \(D\).

Ermitteln Sie die Koordinaten von \(D\) und geben Sie die Koordinaten des Mittelpunkts \(M\) der Strecke \([AC]\) an.

(3 BE)

Teilaufgabe a

Die Abbildung zeigt modellhaft wesentliche Elemente einer Kletteranlage: zwei horizontale Plattformen, die jeweils um einen vertikal stehenden Pfahl gebaut sind, sowie eine Kletterwand, die an einer der beiden Plattformen angebracht ist.

Abbildung Geometrie 2 Mathematik Abitur Bayern 2018 B

Im verwendeten Koordinatensystem beschreibt die \(x_{1}x_{2}\)-Ebene den horizontalen Untergrund. Die Plattformen und die Kletterwand werden als ebene Vielecke betrachtet. Eine Längeneinheit entspricht 1 m in der Wirklichkeit. Die Punkte, in denen die Pfähle aus dem Untergrund austreten, werden durch \(P_{1}(0|0|0)\) und \(P_{2}(5|10|0)\) dargestellt. Außerdem sind die Eckpunkte \(A(3|0|2)\), \(B(0|3|2)\), \(E(6|0|0)\), \(F(0|6|0)\), \(R(5|7|3)\) und \(T(2|10|3)\) gegeben. Die Materialstärke aller Bauteile der Anlage soll vernachlässigt werden.

In den Mittelpunkten der oberen und unteren Kante der Kletterwand sind die Enden eines Seils befestigt, das 20 % länger ist als der Abstand der genannten Mittelpunkte. Berechnen Sie die Länge des Seils.

(3 BE)

Teilaufgabe e

Bestimmen Sie eine Gleichung der Symmetrieachse \(g\) des Dreiecks \(CDS\).

(2 BE)

Teilaufgabe b

Weisen Sie nach, dass das Viereck \(ABCD\) ein Rechteck ist. Bestimmen Sie die Koordinaten von \(M\).

(4 BE)

Teilaufgabe 1a

Gegeben sind die beiden bezüglich der \(x_{1}x_{3}\)-Ebene symmetrisch liegenden Punkte \(A(2|3|1)\) und \(B(2|-3|1)\) sowie der Punkt \(C(0|2|0)\).

Weisen Sie nach, dass das Dreieck \(ABC\) bei \(C\) rechtwinklig ist.

(3 BE)

Teilaufgabe e

Bestimmen Sie die Größe des Winkels zwischen den Seitenflächen \(ABC\) und \(AC'B\).

(4 BE)

Seite 1 von 2