Mittelpunkt einer Strecke

  • Die Ebene \(M\,\colon\; x_1 - x_2 + x_3 = 3\) schneidet den Würfel in einem regulären Sechseck.

    Begründen Sie, dass \(M\) parallel zu \(L\) ist. Geben Sie die Schnittpunkte von \(M\) mit der \(x_1\)-Achse sowie mit der \(x_3\)-Achse an und weisen Sie nach, dass \(M\) den Mittelpunkt der Strecke \([BC]\) enthält.

    (4 BE)

  • Die Punkte \(M\) und \(P\) sind die Mittelpunkte der Kanten \([AD]\) bzw. \([BC]\). Der Punkt \(K\,(0|y_K|4)\) liegt auf der Kante \([DF]\). Bestimmen Sie \(y_K\) so, dass das Dreieck \(KMP\) in \(M\) rechtwinklig ist.

    (3 BE)

  • Um 6 Uhr verläuft der Schatten des Polstabs im Modell durch den Mittelpunkt der Kante \([BC]\), um 12 Uhr durch den Mittelpunkt der Kante \([AB]\) und um 18 Uhr durch den Mittelpunkt der Kante \([AD]\). Begründen Sie, dass der betrachtete Zeitpunkt \(t_{0}\) vor 12 Uhr liegt.

    (2 BE)

  • Die Punkte \(P\) und \(Q\) liegen symmetrisch zu einer Ebene \(F\). Ermitteln Sie eine Gleichung von \(F\).

    (3 BE)

  • Bestimmen Sie die Größe des Winkels zwischen den Seitenflächen \(ABC\) und \(AC'B\).

    (4 BE)

  • Gegeben sind die beiden bezüglich der \(x_{1}x_{3}\)-Ebene symmetrisch liegenden Punkte \(A(2|3|1)\) und \(B(2|-3|1)\) sowie der Punkt \(C(0|2|0)\).

    Weisen Sie nach, dass das Dreieck \(ABC\) bei \(C\) rechtwinklig ist.

    (3 BE)

  • Weisen Sie nach, dass das Viereck \(ABCD\) ein Rechteck ist. Bestimmen Sie die Koordinaten von \(M\).

    (4 BE)

  • Bestimmen Sie eine Gleichung der Symmetrieachse \(g\) des Dreiecks \(CDS\).

    (2 BE)

  • Die Abbildung zeigt modellhaft wesentliche Elemente einer Kletteranlage: zwei horizontale Plattformen, die jeweils um einen vertikal stehenden Pfahl gebaut sind, sowie eine Kletterwand, die an einer der beiden Plattformen angebracht ist.

    Abbildung Geometrie 2 Mathematik Abitur Bayern 2018 B

    Im verwendeten Koordinatensystem beschreibt die \(x_{1}x_{2}\)-Ebene den horizontalen Untergrund. Die Plattformen und die Kletterwand werden als ebene Vielecke betrachtet. Eine Längeneinheit entspricht 1 m in der Wirklichkeit. Die Punkte, in denen die Pfähle aus dem Untergrund austreten, werden durch \(P_{1}(0|0|0)\) und \(P_{2}(5|10|0)\) dargestellt. Außerdem sind die Eckpunkte \(A(3|0|2)\), \(B(0|3|2)\), \(E(6|0|0)\), \(F(0|6|0)\), \(R(5|7|3)\) und \(T(2|10|3)\) gegeben. Die Materialstärke aller Bauteile der Anlage soll vernachlässigt werden.

    In den Mittelpunkten der oberen und unteren Kante der Kletterwand sind die Enden eines Seils befestigt, das 20 % länger ist als der Abstand der genannten Mittelpunkte. Berechnen Sie die Länge des Seils.

    (3 BE)

  • Gegeben ist ein Rechteck \(ABCD\) mit den Eckpunkten \(A(5|-4|-3)\), \(B(5|4|3)\), \(C(0|4|3)\) und \(D\).

    Ermitteln Sie die Koordinaten von \(D\) und geben Sie die Koordinaten des Mittelpunkts \(M\) der Strecke \([AC]\) an.

    (3 BE)

  • Die Schnittfigur von \(k_{1}\) und \(k_{2}\) ist ein Kreis. Bestimmen Sie die Koordinaten des Mittelpunkts und den Radius dieses Kreises.

    (3 BE)

  • Für \(a \in \mathbb R^{+}\) ist die Gerade \(g_{a} \colon \overrightarrow{X} = \begin{pmatrix} 2{,}5 \\ 0 \\ 3{,}5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0 \\ -10a \\ \frac{2}{a} \end{pmatrix}\) mit \(\lambda \in \mathbb R\) gegeben.

    Bestimmen Sie den Wert von \(a\), sodass die Gerade \(g_{a}\) die Würfelfläche \(CDHG\) in ihrem Mittelpunkt schneidet.

    (3 BE)

  • Der Punkt \(L\), der vertikal über dem Mittelpunkt der Kante \([A_{1}A_{2}]\) liegt, veranschaulicht im Modell die Position einer Flutlichtanlage, die 12 m über der Grundfläche angebracht ist. Die als punktförmig angenommene Lichtquelle beleuchtet - mit Ausnahme des Schattenbereichs in der Nähe der Hallenwände - das gesamte Gelände um die Halle.

    Die Punkte \(L\), \(B_{2}\) und \(B_{3}\) legen eine Ebene \(F\) fest. Ermitteln Sie eine Gleichung von \(F\) in Normalenform.

    (zur Kontrolle: \(F \colon 3x_{1} + x_{2} + 5x_{3} - 90 = 0\))

    (5 BE)

  • Wird der Punkt \(P(1|2|3)\) an der Ebene \(E\) gespiegelt, so ergibt sich der Punkt \(Q(7|2|11)\).

    Bestimmen Sie eine Gleichung von \(E\) in Koordinatenform.

    (3 BE)

  • Die Ebene \(F\) enthält die Gerade \(CT\) und zerlegt das Prisma in zwei volumengleiche Teilkörper. Wählen Sie einen Punkt \(P\) so, dass er gemeinsam mit den Punkten \(C\) und \(T\) die Ebene \(F\) festlegt; begründen Sie Ihre Wahl. Tragen Sie die Schnittfigur von \(F\) mit dem Prisma in Ihre Zeichnung ein.

    (3 BE)

  • Das Fenster ist drehbar um eine Achse, die im Modell durch die Mittelpunkte der Strecken \([GH]\) und \([LK]\) verläuft. Die Unterkante des Fensters schwenkt dabei in das Zimmer; das Drehgelenk erlaubt eine zum Boden senkrechte Stellung der Fensterfläche.

    Bestimmen Sie die Koordinaten des Mittelpunkts \(M\) der Strecke \([GH]\) und bestätigen Sie rechnerisch, dass das Fenster bei seiner Drehung den Boden nicht berühren kann.

    (Teilergebnis: \(M\,(2|5|1{,}5)\))

    (4 BE)

  • Der Grundkörper ist mit einer dünnen geradlinigen Bohrung versehen, die im Modell vom Punkt \(H\,(11|3|6)\) der Deckfläche \(DCRS\) aus in Richtung des Schnittpunkts der Diagonalen der Grundfläche verläuft. In der Bohrung ist eine gerade Stahlstange mit einer Länge von 1,4 m so befestigt, dass die Stange zu drei Vierteln ihrer Länge aus der Deckfläche herausragt.

    Bestimmen Sie im Modell eine Gleichung der Geraden \(h\), entlang derer die Bohrung verläuft, sowie die Koordinaten des Punkts, in dem die Stange in der Bohrung endet.

    (zur Kontrolle: möglicher Richtungsvektor von \(h\): \(\displaystyle \begin{pmatrix} 3 \\ 2 \\ -6 \end{pmatrix}\))

    (7 BE)

  • An einem Teil der südlichen Außenwand sind Solarmodule flächenbündig montiert. Die Solarmodule bedecken im Modell eine dreieckige Fläche, deren Eckpunkte die Spitze \(S\) sowie die Mittelpunkte der Kanten \([SB]\) und \([SC]\) sind.

    Ermitteln Sie den Inhalt der von den Solarmodulen bedeckten Fläche.

    (4 BE)