Mittelpunkt einer Strecke

Teilaufgabe c

Für \(a \in \mathbb R^{+}\) ist die Gerade \(g_{a} \colon \overrightarrow{X} = \begin{pmatrix} 2{,}5 \\ 0 \\ 3{,}5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0 \\ -10a \\ \frac{2}{a} \end{pmatrix}\) mit \(\lambda \in \mathbb R\) gegeben.

Bestimmen Sie den Wert von \(a\), sodass die Gerade \(g_{a}\) die Würfelfläche \(CDHG\) in ihrem Mittelpunkt schneidet.

(3 BE)

Teilaufgabe 1b

Die Schnittfigur von \(k_{1}\) und \(k_{2}\) ist ein Kreis. Bestimmen Sie die Koordinaten des Mittelpunkts und den Radius dieses Kreises.

(3 BE)

Teilaufgabe 1a

Gegeben ist ein Rechteck \(ABCD\) mit den Eckpunkten \(A(5|-4|-3)\), \(B(5|4|3)\), \(C(0|4|3)\) und \(D\).

Ermitteln Sie die Koordinaten von \(D\) und geben Sie die Koordinaten des Mittelpunkts \(M\) der Strecke \([AC]\) an.

(3 BE)

Teilaufgabe a

Die Abbildung zeigt modellhaft wesentliche Elemente einer Kletteranlage: zwei horizontale Plattformen, die jeweils um einen vertikal stehenden Pfahl gebaut sind, sowie eine Kletterwand, die an einer der beiden Plattformen angebracht ist.

Abbildung Geometrie 2 Mathematik Abitur Bayern 2018 B

Im verwendeten Koordinatensystem beschreibt die \(x_{1}x_{2}\)-Ebene den horizontalen Untergrund. Die Plattformen und die Kletterwand werden als ebene Vielecke betrachtet. Eine Längeneinheit entspricht 1 m in der Wirklichkeit. Die Punkte, in denen die Pfähle aus dem Untergrund austreten, werden durch \(P_{1}(0|0|0)\) und \(P_{2}(5|10|0)\) dargestellt. Außerdem sind die Eckpunkte \(A(3|0|2)\), \(B(0|3|2)\), \(E(6|0|0)\), \(F(0|6|0)\), \(R(5|7|3)\) und \(T(2|10|3)\) gegeben. Die Materialstärke aller Bauteile der Anlage soll vernachlässigt werden.

In den Mittelpunkten der oberen und unteren Kante der Kletterwand sind die Enden eines Seils befestigt, das 20 % länger ist als der Abstand der genannten Mittelpunkte. Berechnen Sie die Länge des Seils.

(3 BE)

Teilaufgabe e

Bestimmen Sie eine Gleichung der Symmetrieachse \(g\) des Dreiecks \(CDS\).

(2 BE)

Teilaufgabe b

Weisen Sie nach, dass das Viereck \(ABCD\) ein Rechteck ist. Bestimmen Sie die Koordinaten von \(M\).

(4 BE)

Teilaufgabe 1a

Gegeben sind die beiden bezüglich der \(x_{1}x_{3}\)-Ebene symmetrisch liegenden Punkte \(A(2|3|1)\) und \(B(2|-3|1)\) sowie der Punkt \(C(0|2|0)\).

Weisen Sie nach, dass das Dreieck \(ABC\) bei \(C\) rechtwinklig ist.

(3 BE)

Teilaufgabe e

Bestimmen Sie die Größe des Winkels zwischen den Seitenflächen \(ABC\) und \(AC'B\).

(4 BE)

Teilaufgabe 1b

Die Punkte \(P\) und \(Q\) liegen symmetrisch zu einer Ebene \(F\). Ermitteln Sie eine Gleichung von \(F\).

(3 BE)